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Abstract
Background Acute heart failure (AHF) has become a significant challenge in older people with hip fractures. Timely 
identification and assessment of preoperative AHF have become key factors in reducing surgical risks and improving 
outcomes.

Objective This study aims to precisely predict the risk of AHF in older people with hip fractures before surgery 
through machine learning techniques and SHapley Additive exPlanations (SHAP), providing a scientific basis for 
clinicians to optimize patient management strategies and reduce adverse events.

Methods A retrospective study design was employed, selecting patients admitted for hip surgery in the Department 
of Geriatric Orthopedics at the Third Hospital of Hebei Medical University from January 2018 to December 2022 as 
research subjects. Data were analyzed using logistic regression, random forests, support vector machines, AdaBoost, 
XGBoost, and GBM machine learning methods combined with SHAP analysis to interpret relevant factors and assess 
the risk of AHF.

Results A total of 2,631 patients were included in the final cohort, with an average age of 79.3 ± 7.7. 33.7% of patients 
experienced AHF before surgery. A predictive model for preoperative AHF in older people hip fracture patients 
was established through multivariate logistics regression: Logit(P) = -2.262–0.315 × Sex + 0.673 × Age + 0.556 × 
Coronary heart disease + 0.908 × Pulmonary infection + 0.839 × Ventricular arrhythmia + 2.058 × Acute myocardial 
infarction + 0.442 × Anemia + 0.496 × Hypokalemia + 0.588 × Hypoalbuminemia, with a model nomogram established 
and an AUC of 0.767 (0.723–0.799). Predictive models were also established using five machine learning methods, 
with GBM performing optimally, achieving an AUC of 0.757 (0.721–0.792). SHAP analysis revealed the importance of all 
variables, identifying acute myocardial infarction as the most critical predictor and further explaining the interactions 
between significant variables.
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Introduction
With the acceleration of global population aging, hip 
fractures in the older people have become a significant 
public health challenge. Since records began in 1990, 
over 1.6 million people worldwide have suffered from hip 
fractures. It is predicted that, over time, especially among 
the older people, the incidence of hip fractures will show 
a gradually increasing trend. By 2050, the number of 
individuals affected is expected to rise to at least 4.5 mil-
lion [1, 2]. These fractures not only increase the mortal-
ity and disability rates of patients, severely affecting the 
quality of life, but also impose a significant burden on 
the healthcare system, including the costs of surgical 
treatment, long-term rehabilitation, and the subsequent 
socio-economic burdens. In particular, the risk of AHF 
before surgery in older people with hip fractures has sig-
nificantly increased, becoming a key complication closely 
associated with high mortality rates and prolonged hos-
pital stays, further exacerbating the risk of postoperative 
complications, including infections and re-fractures [3]. 
Therefore, developing effective prediction and preven-
tion strategies is crucial for improving the treatment out-
comes of this patient group.

In clinical practice, we have observed that most sur-
geons tend to overlook the assessment of heart failure 
biomarkers such as Brain Natriuretic Peptide (BNP) 
or N-Terminal pro-B-Type Natriuretic Peptide (NT-
proBNP) in the preoperative evaluation of older people 
with hip fractures. This oversight could miss patients 
who have developed AHF, thus failing to intervene timely 
in this potentially high-risk state [4]. Machine learning 
offers a new perspective and approach by analyzing vast 
amounts of patient data to predict complications that 
may arise after a hip fracture, such as preoperative AHF, 
thereby providing a scientific basis for clinical decision-
making, optimizing patient management strategies, and 
reducing the incidence of adverse events [5, 6]. This 
study utilizes machine learning methods and SHAP val-
ues aimed at precisely predicting the risk of AHF before 
surgery in older people with hip fractures. By analyzing 
clinical data to reveal the complex associations between 
patient characteristics, laboratory test results, and preop-
erative complications, this research offers a new perspec-
tive and method. It not only enhances the accuracy of 
predictions but also provides actionable data support for 
doctors, optimizing patient management strategies, and 
reducing the occurrence of adverse events.

Therefore, the establishment and use of this study’s 
model can alert physicians to conduct a more compre-
hensive preoperative assessment, including the mea-
surement of BNP or NT-proBNP, thus identifying those 
high-risk patients. Such an integrated preoperative 
approach can not only reduce surgical risks and postop-
erative complications but also shorten hospital stays and 
potentially lower mortality rates. It provides a safer and 
more effective treatment plan for older people with hip 
fractures, significantly improving their prognosis and 
ultimately achieving the goal of improving the clinical 
outcomes of older people with hip fractures.

Materials and methods
Study design and patients
This retrospective study selected inpatients who under-
went hip surgery at the Department of Geriatric Ortho-
pedics, Hebei Medical University Third Hospital, from 
January 2018 to December 2022, as the study subjects. 
The inclusion criteria were: (1) aged 65 years and older; 
(2) hip fractures confirmed by radiographic examina-
tions such as X-rays; (3) patients with complete medical 
records, laboratory test results, and other necessary med-
ical documents. Exclusion criteria were lack of complete 
medical records, laboratory test results, or other neces-
sary medical documents, and patients who did not meet 
the diagnostic criteria for hip fractures.

Ethical statement
This study, based on the retrospective analysis of exist-
ing case data, ensured that all patient data collection and 
analysis were conducted anonymously to protect patient 
privacy. Furthermore, the study was in compliance with 
the Declaration of Helsinki and had been approved and 
supported by the Institutional Review Board of Hebei 
Medical University Third Hospital (Approval No.: 
2021-087-1).

Disease definition
AHF is a condition where there is a sudden decrease in 
the heart’s ability to pump blood, leading to the body’s 
circulatory volume being insufficient to meet metabolic 
demands. According to the European Society of Cardiol-
ogy, AHF is caused by acute changes in the structure or 
function of the heart, accompanied by increased filling 
pressures and/or a significant reduction in ejection frac-
tion. Common symptoms include shortness of breath, 

Conclusion This study successfully developed a predictive model based on machine learning that accurately 
predicts the risk of AHF in older people with hip fractures before surgery. The application of SHAP enhanced the 
model’s interpretability, providing a powerful tool for clinicians to identify high-risk patients and take appropriate 
preventive and therapeutic measures in preoperative management.
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pulmonary congestion, and inadequate organ perfusion. 
A key biochemical marker for diagnosing AHF is a sig-
nificant increase in serum BNP or NT-proBNP levels [7]. 
Different thresholds of BNP and NT-proBNP are used 
for diagnosing AHF to accommodate patients of vary-
ing ages. Specifically, the diagnostic threshold for BNP 
is ≥ 300 pg/mL for patients of all ages. For NT-proBNP, 
the thresholds are age-stratified: >450 pg/mL for patients 
under 55 years of age; >900 pg/mL for those between 
55 and 75 years; and > 1800 pg/mL for patients 75 years 
and older. These elevated markers are instrumental in 
confirming the diagnosis of AHF [8]. In clinical prac-
tice, differentiating between an acute exacerbation of 
heart failure and chronic heart failure is key, focusing 
on changes in clinical symptoms and acute variations in 
BNP or NT-proBNP levels. Through this approach, phy-
sicians can more accurately diagnose AHF, thereby pro-
viding appropriate treatment for patients.

Data collection
This retrospective study is based on data collected from 
patients who underwent hip surgery in the Department 
of Geriatric Orthopedics at Hebei Medical University 
Third Hospital, from January 2018 to December 2022. 
Data on patients prior to surgery were gathered through 
the medical record system, including details on heart fail-
ure status, sex, age, admission time, and comorbidities 
such as hypertension, Old cerebral infarction, coronary 
artery disease, diabetes, chronic obstructive pulmonary 
disease (COPD), cancer, arrhythmias, pulmonary infec-
tions, ventricular arrhythmias, acute myocardial infarc-
tion, acute cerebrovascular disease, stress hyperglycemia, 
stress ulcers, urinary tract infections, anemia, hypokale-
mia, hyponatremia, hypoalbuminemia, and lower limb 
venous thrombosis. By analyzing this data, we aim to 
gain a deeper understanding of the risk factors for AHF 
in older people with hip fractures before surgery, thereby 
providing precise intervention suggestions for clinical 
practice.

Model establishment
Dataset configuration and variable selection
In this study, we utilized the logistic regression method 
to predict the occurrence of AHF in older people with 
hip fractures before surgery. Initially, the collected data 
were divided into training and validation sets at a ratio 
of 7:3 to ensure the adequacy of the training process and 
the independence of the evaluation process. To identify 
risk factors significantly associated with AHF and avoid 
overfitting, we used Backward Elimination for vari-
able selection. In this approach, we started with a full 
model that included all candidate variables and progres-
sively removed those with low statistical significance 
to optimize the model [9]. Furthermore, we utilized a 

multivariate logistic regression model to assess the rela-
tionship between these factors and AHF, ensuring that 
only statistically significant predictors were included 
in the final model. By constructing a nomogram of the 
model, we made the prediction outcomes and the con-
tributions of various variables both intuitive and easy to 
understand.

Multi-model development and validation process
Beyond the basic logistic regression model, we delved 
into five additional machine learning algorithms, includ-
ing Random Forest (RF), Support Vector Machine 
(SVM), Adaptive Boosting (AdaBoost), Extreme Gradi-
ent Boosting (XGBoost) and gradient boosting machine 
(GBM). To ensure methodological consistency and allow 
for direct performance comparison across different mod-
els, the same set of variables selected via the Backward 
Elimination was used in developing each of these pre-
dictive models. The models were trained using a 5-fold 
cross-validation method, which helped us to more accu-
rately evaluate their performance on unseen data [10]. 
Given the imbalance between positive and negative sam-
ples in our dataset, we incorporated the Synthetic Minor-
ity Over-sampling Technique (SMOTE) focusing on the 
minority class samples at the boundary to improve the 
sample distribution and optimize model performance.

Model interpretability and comprehensive evaluation
During the model evaluation phase, we not only focus on 
the model’s discriminative ability, assessed by calculating 
the Area Under the Curve (AUC) value, but also on the 
model’s calibration through the Hosmer-Lemeshow test. 
Additionally, Decision Curve Analysis (DCA) is applied 
to compute the net benefit at different thresholds, com-
prehensively evaluating the model’s practical value in 
clinical decision-making [11]. The Clinical Impact Curve 
(CIC) is utilized to visualize the benefit values brought 
by different thresholds. To enhance the model’s inter-
pretability, we employed SHapley Additive exPlanations 
(SHAP) analysis, which demonstrates the contribution 
of different variables at the individual level. Furthermore, 
every observation in the dataset can be explicated with 
designated SHAP values.

Through the aforementioned strategy, our goal is to 
construct a model that is both precise and highly inter-
pretable, providing a powerful tool for clinicians. This 
will enable them to identify the risk of AHF before sur-
gery more promptly when treating older people with hip 
fractures.

Statistical analysis
In this study, our aim was to reveal the relationship 
between AHF and various risk factors in older people 
with hip fractures. Initially, we analyzed the baseline 
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information of participants through descriptive statistics. 
To streamline our analysis and enhance the robustness of 
our findings, we employed nonparametric methods for 
all continuous variables. This approach eliminates the 
need to differentiate between normally and non-normally 
distributed data, ensuring uniformity in our statisti-
cal treatment and enhancing the interpretability of our 
results. The distribution characteristics of categorical 
variables were presented in frequencies and percentages. 
Variance Inflation Factor (VIF) and tolerance were calcu-
lated to assess potential collinearity among parameters, 
with a VIF below 5 and tolerance above 0.1 considered as 
standards indicating no significant collinearity. All statis-
tical analyses were conducted using R language. The level 
of statistical significance was set at P < 0.05.

Results
Patient baseline characteristics
Between January 2018 and December 2022, a total of 
4,170 older people with hip fractures were included in 
our study. After screening, 1,539 patients were excluded, 
leaving 2,631 patients in the final analysis. The excluded 
patients comprised 1,077 with non-hip fractures, 328 
non-surgical patients, and 134 with incomplete data 
(Fig. 1).

Table  1 presents the baseline clinical characteristics 
of the overall sample and compares those between the 
AHF group and the non-AHF group among older peo-
ple with hip fractures, analyzed using R software. Over-
all, the mean age of the patients was 79.3 ± 7.7, with 766 
males (29.1%) and 1,865 females (70.9%). Among them, 

888 patients (33.7%) experienced AHF before surgery. 
There were statistically significant differences in gender 
distribution, age, and age groups (< 75 years and ≥ 75 
years) between the two groups (p < 0.05), as determined 
by R software. Regarding comorbidities, the prevalence 
of coronary artery disease, COPD, and arrhythmias was 
significantly higher in the AHF group compared to the 
non-AHF group (p < 0.05), with analysis conducted in R 
software. Additionally, preoperative complications such 
as pulmonary infection, ventricular arrhythmias, acute 
myocardial infarction, acute cerebrovascular disease, and 
urinary tract infections also showed a higher incidence 
in the AHF group, with significant statistical differences 
(p < 0.05) identified through R software.

Univariate analysis of laboratory data and ultrasound 
examinations
Table  2 displays the preoperative laboratory and lower 
limb venous ultrasound characteristics of older people 
with hip fractures. The incidences of anemia, hypoka-
lemia, hyponatremia, and hypoalbuminemia were sig-
nificantly higher in the AHF group compared to the 
non-AHF group, showing significant statistical differ-
ences (p < 0.05). However, there was no significant differ-
ence in the incidence of lower limb venous thrombosis 
between the two groups.

Development and validation of nomograms
Using R, patients were randomly divided into a train-
ing set and a test set in a 7:3 ratio, with 1,843 patients 
in the training set and 788 in the test set. Initial analysis 

Fig. 1 The patient flow chart in our study

 



Page 5 of 17Yu et al. BMC Geriatrics          (2025) 25:268 

Variables Total(N = 2631) Non-acute heart failure(N = 1743) Acute heart failure(N = 888) p-value
Gender, N (%) 0.016
 Male 766(29.1%) 534(30.6%) 232(26.1%)
 Female 1865(70.9%) 1209(69.4%) 656(73.9%)
Age, mean ± SD (years) 79.3 ± 7.7 78.2 ± 7.8 81.6 ± 7.0 <0.001
Age group, N (%) <0.001
 <75years 746(28.4%) 588(33.7%) 158(17.8%)
 ≥ 75 years 1885(71.6%) 1155(66.3%) 730(82.2%)
Admission time 0.331
 <48 h 1813(68.9%) 1212(69.5%) 601(67.7%)
 ≥ 48 h 818(31.1%) 531(30.5%) 287(32.3%)
Comorbidity N (%)
Hypertension 0.530
 Yes 1370(52.1%) 900(51.6%) 470(52.9%)
 No 1261(47.9%) 843(48.4%) 418(47.1%)
Old cerebral infarction 0.145
 Yes 1207(45.9%) 782(44.9%) 425(47.9%)
 No 1424(54.1%) 961(55.1%) 463(52.1%)
Coronary heart disease <0.001
 Yes 705(26.8%) 426(24.4%) 279(31.4%)
 No 1926(73.2%) 1317(55.1%) 609(68.6%)
Diabetes 0.967
 Yes 662(25.2%) 439(25.2%) 223(25.1%)
 No 1969(74.8%) 1304(74.8%) 665(74.9%)
COPD 0.001
 Yes 300(11.4%) 173(9.9%) 127(4.3%)
 No 2331(88.6%) 1570(90.1%) 761(85.7%)
Cancer 0.547
 Yes 107(4.1%) 68(3.9%) 39(4.4%)
 No 2524(95.9%) 1675(96.1%) 849(95.6%)
Arrhythmia 0.021
 Yes 175(6.7%) 102(5.9%) 73(8.2%)
 No 2456(93.3%) 1641(94.1%) 815(91.8%)
Complications
Pulmonary infection <0.001
 Yes 376(14.3%) 198(11.4%) 178(20.0%)
 No 2255(85.7%) 1545(88.6%) 710(80.0%)
Ventricular arrhythmia <0.001
 Yes 424(16.1%) 212(12.2%) 212(23.9%)
 NO 2207(83.9%) 1531(87.8%) 676(76.1%)
Acute myocardial infarction <0.001
 Yes 172(6.5%) 53(3.0%) 119(13.4%)
 No 2459(93.5%) 1690(97.0%) 769(86.6%)
Acute cerebrovascular disease 0.029
 Yes 250(9.5%) 150(8.6%) 100(11.3%)
 No 2381(90.5%) 1593(91.4%) 778(88.7%)
Stress hyperglycemia 0.084
 Yes 38(1.4%) 20(1.1%) 18(2.0%)
 No 2593(98.6%) 1723(98.9%) 870(98.0%)
Stress ulcer 0.838
 Yes 27(1.0%) 19(1.1%) 8(0.9%)
 No 2604(99.0%) 1724(98.9%) 880(99.1%)
Urinary tract infection 0.027

Table 1 Baseline clinical characteristics of hip fracture patients classified by acute heart failure
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with Backward Elimination on the training set selected 
15 variables out of 22. Subsequent multivariable logis-
tic regression analysis identified gender, age, coronary 
heart disease, pulmonary infection, ventricular arrhyth-
mia, acute myocardial infarction, anemia, hypokalemia, 
and hypoalbuminemia as independent risk factors for 
the occurrence of AHF before surgery in older people 
with hip fractures (Table 3; Fig. 2). Based on these inde-
pendent risk factors, we developed a nomogram model 
to predict the probability of pre-surgical AHF in older 
people with hip fractures (Fig.  3). The predictive model 
is given by Logit(P) = -2.262–0.315 × Sex + 0.673 × 
Age + 0.556 × Coronary heart disease + 0.908 × Pulmo-
nary infection + 0.839 × Ventricular arrhythmia + 2.058 × 
Acute myocardial infarction + 0.442 × Anemia + 0.496 × 

Hypokalemia + 0.588 × Hypoalbuminemia. The variance 
inflation factor (VIF) was calculated for each variable in 
the model, indicating all predictor variables had VIF val-
ues well below the threshold of 5, specifically: Sex 1.01, 
Age 1.01, Coronary heart disease 1.01, Pulmonary infec-
tion 1.01, Ventricular arrhythmia 1.02, Acute myocardial 
infarction 1.01, Anemia 1.11, Hypokalemia 1.02, Hypoal-
buminemia 1.12.

The nomogram was evaluated through 1,000 boot-
strap resampling, and the results showed that the cali-
bration curve deviated only slightly from the perfect 
prediction line, indicating good agreement between the 
model’s predictions and the actual observations (Fig. 4). 
The Area Under the Curve (AUC) of the Receiver Oper-
ating Characteristic (ROC) for the validation dataset was 
0.767 (95% CI: 0.723–0.799), indicating robust predic-
tive performance of the model (Fig. 5). Additionally, the 
cross-validation process was implemented across the 
entire dataset, yielding an average AUC of 0.760. These 
cross-validation metrics further substantiate the mod-
el’s performance and underscore its reliability in diverse 
clinical settings. Moreover, the nomogram model’s cor-
rected C-statistic obtained through bootstrap resampling 
was 0.776, demonstrating good performance in internal 
validation. This means that the model has strong dis-
criminative ability and can accurately predict the risk of 
AHF in patients. DCA indicates significant clinical deci-
sion-making value with a probability range of 8-90% in 
the training set (Fig. 6A) and 9-86% in the validation set 

Table 2 The results of univariate analysis of laboratory data and ultrasound examination
Variables Total(N = 2631) Non-acute heart failure(N = 1743) Acute heart failure(N = 888) p-value
Anemia <0.001
 Yes 802(30.5%) 476(27.3%) 326(36.7%)
 No 1829(69.5%) 1267(72.7%) 562(63.3%)
Hypokalemia <0.001
 Yes 588(22.3%) 341(19.6%) 247(27.8%)
 No 2043(77.7%) 1402(80.4%) 641(72.2%)
Hyponatremia <0.001
 Yes 739(28.1%) 445(25.5%) 294(33.1%)
 No 1892(71.9%) 1298(74.5%) 594(66.9%)
Hypoalbuminemia 0.001
 Yes 863(32.8%) 534(30.6%) 329(37.0%)
 No 1768(67.2%) 1209(69.4%) 559(63.0%)
Lower extremity venous thrombosis 0.234
 Yes 850(32.3%) 577(33.1%) 273(30.7%)
 No 1781(67.7%) 1166(66.9%) 615(69.3%)
Values are presented as median (interquartile range), or number (percentage) as appropriate

Table 3 Prediction factors of preoperative acute heart failure in 
geriatric patients with hip fracture

B Odds ratio P value 95%CI
Sex(Male) -0.315 0.730 0.014 0.565–0.938
Age(≥75) 0.673 1.960 <0.001 1.509–2.563
Coronary heart disease 0.556 1.745 <0.001 1.374–2.216
Pulmonary infection 0.908 2.480 <0.001 1.865–3.302
Ventricular arrhythmia 0.839 2.313 <0.001 1.758–3.304
Acute myocardial infarction 2.058 7.836 <0.001 4.787–13.044
Anemia 0.442 1.556 <0.001 1.223–1.977
Hypokalemia 0.496 1.642 <0.001 1.271–2.120
Hypoalbuminemia 0.588 1.800 <0.001 1.391–2.333
Constant -2.262 0.104 <0.001

Variables Total(N = 2631) Non-acute heart failure(N = 1743) Acute heart failure(N = 888) p-value
 Yes 115(4.4%) 65(3.7%) 50(5.6%)
 No 2516(95.6%) 1678(96.3%) 838(94.4%)
Values are presented as mean ± standard deviation, median (interquartile range), or number (percentage) as appropriate, SD Standard deviation, COPD Chronic 
Obstructive Pulmonary Disease
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Fig. 3 A nomogram model for predicting the occurrence of preoperative acute heart failure in older people with hip fractures

 

Fig. 2 Forest plot showing the relationship between risk factors and the occurrence of preoperative acute heart failure in older people with hip fracture
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(Fig.  6B). Additionally, the Clinical Impact Curve (CIC) 
demonstrates the effect of different threshold settings on 
the number of patients predicted by the model (Fig. 6C 
and D). This further suggests the model has substantial 

application potential, especially in predicting the risk of 
AHF in older people after hip fractures. The model pro-
vides a powerful tool to more precisely predict the like-
lihood of AHF, thereby guiding clinicians towards more 
appropriate preventative and therapeutic measures. 
Implementing clinical interventions based on this mod-
el’s predictions can effectively optimize patient manage-
ment, likely leading to positive impacts on patient health 
outcomes.

Development of predictive models using machine learning 
methods
All raw data was preprocessed prior to being input into 
the machine learning model, including cleaning and 
transformation steps, to ensure data integrity and high 
quality for accurate handling and analysis by the machine 
learning algorithms. The features with the highest impor-
tance scores in standardization were Acute Myocardial 
Infarction, Ventricular Arrhythmia, Pulmonary Infec-
tion, and Anemia (Fig. 7A; Table 4). Correlations between 
variables were also calculated and are displayed in Figure 
(Fig.  7B), which presents a detailed correlation matrix 
of all input variables. The heatmap uses color gradients 
to represent the strength and direction of linear correla-
tions, with red indicating positive correlations, blue indi-
cating negative correlations, and white representing no 
correlation. This visualization enables a clearer under-
standing of the relationships between input variables, 
highlighting potential collinearity issues.

Subsequently, the predictive models including Random 
Forest (RF), Support Vector Machine (SVM), Adaptive 

Fig. 5 Analysis of the ROC curve for the predictive values of preoperative 
acute heart conditions. The blue curve represents the ROC for the training 
set, with an area under the curve (AUC) of 0.761 (95% CI: 0.740–0.786), 
illustrating the model’s performance on the dataset used for model devel-
opment. The red curve represents the ROC for the validation set, with an 
AUC of 0.767 (95% CI: 0.723–0.799), indicating the model’s performance on 
a separate dataset used to test the model. The dashed diagonal line repre-
sents the line of no discrimination, which a purely random classifier would 
achieve. The closer the ROC curve is to the top left corner, the higher the 
test’s overall accuracy

 

Fig. 4 Calibration curves of the acute heart failure nomogram prediction in the cohort. Panel A shows the calibration curve for the training dataset, and 
Panel B shows the curve for the test dataset. The x-axis represents the predicted acute heart failure risk. The y-axis represents the actual diagnosed acute 
heart failure. The diagonal dotted line represents a perfect prediction by an ideal model. The solid line represents the performance of the nomogram, of 
which a closer fit to the diagonal dotted line represents a better prediction
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Boosting (AdaBoost), Extreme Gradient Boosting 
(XGBoost), and Gradient Boosting Machine (GBM) were 
developed using the set of 15 variables selected through 
the Backward Elimination process. This consistent vari-
able set across all models allows for a robust comparison 
of their effectiveness in predicting preoperative AHF. The 
models were evaluated on their performance metrics, 
with the Area Under the Curve (AUC) values obtained 
as follows: RF 0.746 (0.710—0.782), SVM 0.714 (0.676–
0.752), AdaBoost 0.735 (0.699–0.772), XGBoost 0.747 

(0.711–0.783), GBM 0.757 (0.721–0.792), with GBM 
showing the best AUC among the models (Fig. 8).

Accuracy, sensitivity, precision, and F1 scores were 
assessed for each predictive model. The results revealed 
that in terms of accuracy, GBM achieved the high-
est at 73.1%, closely followed by XGBoost with 73.0%. 
AdaBoost also displayed strong performance with an 
accuracy of 72.5%. When evaluating sensitivity, GBM 
outperformed all other models, reaching an impressive 
95.6%, significantly higher than the rest, with SVM also 
performing well at 90.6%. In terms of precision, XGBoost 

Fig. 6 Decision curve analysis (DCA) and Clinical Impact Curves (CIC) for the acute heart failure nomogram. A and B depict the DCA for the training and 
test datasets respectively, with the y-axis measuring net benefit. The blue line in each represents the performance of the acute heart failure risk nomo-
gram. The grey solid line assumes all patients have acute heart failure, and the grey dashed line assumes no patients have the condition. C and D show 
the CIC for the training and test datasets respectively, with the y-axis indicating the number of patients. In C and D, the solid blue line represents high-risk 
patients as identified by the nomogram, and the dashed red line indicates the actual patients with heart failure. These graphs suggest that the nomogram 
provides a positive net benefit for clinical decision-making within a probability threshold range
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led the group with 75.9%, followed closely by RF at 74.9%. 
GBM’s precision was lower at 72.7%. For the F1 score, 
which reflects a balance between precision and sensitiv-
ity, GBM showed the best result at 82.6%, indicating its 
effectiveness in providing a harmonious balance of recall 

and precision. Additionally, Youden’s Index (YI = Sensi-
tivity + Specificity − 1) was calculated and incorporated 
as an additional performance metric to evaluate the bal-
ance between sensitivity and specificity for each model. 
Among the predictive models, GBM demonstrated the 
highest YI (0.687), highlighting its superior ability to 

Table 4 The exact data of importance of all the variables
Variables Importance Normalized 

importance
Acute myocardial infarction 100 0.13605442
Ventricular arrhythmia 57 0.07755102
Pulmonary infection 55 0.07482993
Anemia 48 0.06530612
Age 45 0.06122449
Hypokalemia 43 0.0585034
Hypoalbuminemia 42 0.05714286
Coronary heart disease 37 0.05034014
Hypertension 36 0.04897959
Old cerebral infarction 35 0.04761905
Hyponatremia 34 0.0462585
Admission time 33 0.04489796
Sex 32 0.04353741
Lower limb venous thrombosis 29 0.03945578
Diabetes 28 0.03809524
COPD 27 0.03673469
Acute cerebrovascular disease 22 0.02993197
Arrhythmia 16 0.02176871
Urinary tract infection 7 0.00952381
Cancer 6 0.00816327
Stress hyperglycemia 3 0.00408163
Stress ulcer 0 0

Fig. 8 Receiver Operating Characteristic (ROC) curves for various machine 
learning models in the evaluation of the dataset. The curves compare the 
sensitivity (true positive rate) and 1 - specificity (false positive rate) across 
different thresholds for Random Forest (RF), Support Vector Machine 
(SVM), AdaBoost, Extreme Gradient Boosting (XGBoost), and Gradient 
Boosting Machine (GBM). Area Under the Curve (AUC) values are displayed 
in the legend, with GBM showing the highest AUC of 0.757

 

Fig. 7 Variable Importance and Correlation Matrix from Preprocessed Data in Machine Learning Model Analysis. A displays the variable importance 
scores, with the most significant features for the model’s standardization being Acute Myocardial Infarction, Ventricular Arrhythmia, Pulmonary Infection, 
and Anemia. B shows the correlation matrix of the variables, with red indicating a strong positive correlation, blue a strong negative correlation, and white 
indicating no correlation. These visualizations provide the relationships between different clinical variables
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achieve an optimal trade-off between sensitivity and 
specificity. SVM ranked second with a YI of 0.623, fol-
lowed by XGBoost with a YI of 0.609 (Table 5).

SHAP analysis was conducted to understand the 
impact of multiple features on the predictive model for 
AHF in older people with hip fractures before surgery 
(Fig. 9). The Feature Importance Plot shows each obser-
vation as a dot, with the SHAP value on the x-axis indi-
cating the impact of the feature on the model’s output. 
Positive values indicate contributions that increase risk, 
while negative values indicate contributions that decrease 
risk. The color gradient from purple to yellow represents 
feature values from low to high. It is observed that the 
SHAP values for Acute Myocardial Infarction are distrib-
uted in the positive region, with several higher positive 

points indicating that the presence of acute myocardial 
infarction significantly increases the risk of AHF. Con-
versely, Hyponatremia shows both positive and negative 
SHAP values, concentrated near zero, suggesting a rela-
tively small or individual-dependent impact on the pre-
diction. However, the SHAP values for COPD are mainly 
in the negative region, possibly indicating a lower risk of 
AHF in patients with COPD in this model. Through indi-
vidual-level predictive behavior analysis using the SHAP 
algorithm, the model revealed key variables influenc-
ing the risk of AHF for four patients, showing the con-
tribution of each factor to the prediction and identifying 
Acute Myocardial Infarction as the main variable affect-
ing all patients. Its SHAP value was significantly higher 
than other features, and we also found that Anemia, 

Table 5 Comparing parameters of preoperative acute heart failure models in older people with hip fractures
AUC Accuracy Sensitivity Precision F1 YI

RF 0.746 72.0% 87.5% 74.9% 80.7% 0.595
SVM 0.714 71.7% 90.6% 73.1% 80.9% 0.623
AdaBoost 0.735 72.6% 87.2% 44.0% 80.8% 0.578
XGBoost 0.747 73.0% 87.9% 75.9% 81.4% 0.609
GBM 0.757 73.1% 95.6% 72.7% 82.6% 0.687
LR 0.761 72.5% 79.5% 24.4% 37.3% 0.520
AUC area under the curve of ROC, RF random Forest, SVM support vector machine, AdaBoost adaptive boosting, XGBoost extreme gradient boosting, GBM gradient 
boosting machine, LR logistic regression, YI Youden’s indx

Fig. 9 SHAP value analysis for predictive modeling of acute heart Failure in older people with hip fractures. This Feature Importance Plot visualizes the 
impact of individual features on the prediction of acute heart failure risk. Each dot represents an observation, plotted against its SHAP value on the x-axis. 
The direction and magnitude of these SHAP values indicate whether the feature increases (positive value) or decreases (negative value) the risk of acute 
heart failure according to the model. The color gradient signifies the value of the feature, ranging from low (purple) to high (yellow)
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Ventricular Arrhythmia, and Pulmonary Infection play 
important roles in increasing the risk of heart failure 
(Figs.  10A-D). The SHAP values of these variables pro-
vide positive contributions, reinforcing their importance 
in risk assessment, consistent with the overall trends in 
the Feature Importance Plot.

By constructing multivariate dependence plots 
(Fig.  11), we suggest interactions between variable fea-
tures, such as between Acute Myocardial Infarction and 
Anemia, where scatter plots reveal their association in 
predicting the risk of AHF. With an increase in the fea-
ture value of acute myocardial infarction, a significant 
rise in SHAP values is observed, especially at higher 

feature values of acute myocardial infarction, where we 
see a cluster of yellow dots in the upper right corner of 
the graph. These yellow dots represent higher values of 
anemia, implying that in the context of high values of 
acute myocardial infarction, anemia’s predictive contri-
bution to the risk of AHF increases. Conversely, when the 
feature values of acute myocardial infarction are lower, 
the dots, mostly shown in purple and concentrated in 
the lower left corner of the graph, represent a smaller 
predictive contribution to heart failure risk. In addition 
to the demonstrated relationship between Acute Myo-
cardial Infarction (AMI) and Anemia, Fig. 11 also pres-
ents multivariate dependence plots that reveal important 

Fig. 10 SHAP value distributions for individual predictive analysis across four patients (A-D). These plots display the influence of various clinical features 
on the model’s prediction of acute heart failure risk for each patient. In each subfigure, the x-axis represents the SHAP value, indicating the impact level 
of each feature. Features with higher SHAP values contribute more significantly to the prediction. Across all patients, Acute Myocardial Infarction is con-
sistently the most influential variable with the highest SHAP values, indicating a strong association with increased heart failure risk
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interactions between other clinical features. Pulmonary 
Infection and Anemia: The scatter plot shows an increas-
ing trend of SHAP values for anemia as the severity of 
pulmonary infection intensifies. The dots transition from 
lower to higher SHAP values with increased pulmonary 
infection severity, suggesting a strengthening influence 
of anemia on heart failure risk predictions in the con-
text of worsening pulmonary conditions. Ventricular 
Arrhythmia and Old Cerebral Infarction: This plot indi-
cates a correlation between the presence of ventricular 
arrhythmias and higher SHAP values when old cerebral 
infarction is noted. More intense yellow dots appear as 
the feature values of ventricular arrhythmia increase 
alongside old cerebral infarction, highlighting a poten-
tial interactive effect on heart failure risk. Anemia and 
Acute Cerebrovascular Disease: Here, the distribution 
of dots illustrates how elevated anemia levels, combined 

with acute cerebrovascular disease, lead to higher SHAP 
values. This pattern suggests an amplified predictive sig-
nificance of anemia under the burden of acute cerebro-
vascular conditions.

Discussion
Hip fractures are a common type of fracture among the 
older people population, significantly impacting the qual-
ity of life of patients. Therefore, timely surgical interven-
tion is crucial for restoring normal life functions and 
independence in patients [12]. However, the occurrence 
of AHF (AHF) preoperatively in older people with hip 
fractures is a common and serious complication. This 
complication not only increases surgical risks but may 
also prolong hospital stays, elevate medical costs, and 
make postoperative recovery more challenging, even 
leading to patient mortality [13, 14]. In older people with 

Fig. 11 Multivariate dependence plots demonstrating feature interactions in acute heart failure risk prediction. Each plot illustrates the relationship 
between a specific feature and SHAP values, which quantify the impact on the model’s output. The color gradient, from purple to yellow, shows the value 
of one feature relative to another, with yellow indicating higher values. The plots reveal non-linear interactions between features, indicating complex 
relationships that are crucial for understanding the model’s predictions
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hip fractures, predicting the risk of preoperative AHF is 
key to improving patient outcomes and reducing medi-
cal costs [15]. Recent studies have shown that predictive 
models constructed using multivariate logistic regression 
models and machine learning methods can identify high-
risk patients. It has been found that advanced age (≥ 70 
years), hypertension, anemia, hypoalbuminemia, and 
surgical duration exceeding 120  min are risk factors for 
heart failure in older people with hip fractures. Under-
standing these risk factors provides important references 
for the perioperative management of older people with 
hip fractures [16]. However, we have developed a logis-
tic regression model and five machine learning models 
through retrospective studies to predict the likelihood 
of AHF preoperatively in older people with hip fractures 
and employed SHAP to offer an explanation of feature 
vector importance and the interactions among vectors 
in machine learning models, enhancing model transpar-
ency and interpretability. This provides clinicians with a 
quantitative tool to assess the risk of AHF preoperatively 
in older people with hip fractures, allowing for more tar-
geted preventive and therapeutic measures in preopera-
tive management, thereby improving patient outcomes.

With the advent of the big data era, machine learning 
models have gained increasing attention due to their abil-
ity to handle large datasets, identify complex nonlinear 
relationships, and interactive effects. This technology has 
shown immense potential in medical fields such as heart 
failure, where analyzing big data from electronic health 
records can not only identify subtypes of heart failure 
but also improve risk prediction, offering possibilities for 
personalized medicine [17]. A recent article published in 
The Lancet highlights the advantages of machine learn-
ing methods. Amitava Banerjee’s team utilized machine 
learning to classify and predict outcomes of heart fail-
ure by analyzing large electronic health record datasets, 
clarifying classifications of heart failure patients, utiliz-
ing polygenic risk scores to measure their relevancy, and 
explaining potential biological mechanisms between 
different heart failure subtypes [18]. For the periopera-
tive assessment of patients with hip fractures, a research 
team developed a predictive model to evaluate the risk of 
AHF perioperatively. This model is based on multivari-
ate logistic regression analysis, covering factors such as 
respiratory diseases, history of heart disease, and ASA 
scores [19].

However, it’s noteworthy that our research differs from 
previous studies as we focus more on predicting AHF 
preoperatively in older people with hip fractures. Our 
study found that, in terms of AUC value, the LR model 
(0.761) marginally outperforms the GBM model (0.757), 
suggesting a slightly better overall capability in distin-
guishing patients with or without AHF. AUC was used 
as the primary metric to compare model performance 

because it is a threshold-independent measure that 
reflects the model’s overall discriminative ability across 
all possible classification thresholds. At the same time, 
the nomogram developed from the logistic regres-
sion model provides a significant advantage by offer-
ing a visual and user-friendly tool for risk assessment 
of preoperative AHF in older people with hip fractures. 
This nomogram translates complex clinical data into a 
straightforward points system, where each predictor vari-
able is assigned a score. Clinicians can quickly calculate 
a patient’s total risk score by summing these individual 
scores, which directly corresponds to a probability of out-
come on a visual scale. This functionality not only simpli-
fies the decision-making process but also enhances the 
understanding of patient-specific risk factors, facilitating 
tailored intervention strategies. Such a tool is invaluable 
in clinical settings, supporting rapid and informed deci-
sions that are critical in managing the acute care of these 
patients.

Although there is little difference in accuracy between 
the two models, GBM exhibits higher performance in 
sensitivity, precision, and F1 score. These threshold-
dependent metrics provide complementary information 
to AUC by offering additional insights into the practi-
cal classification capabilities of the model under a spe-
cific threshold (e.g., 0.5). Specifically, in clinical settings 
such as preoperative AHF prediction, high sensitivity 
ensures that most true positive cases are correctly identi-
fied, which is critical for minimizing the risk of missed 
diagnoses (false negatives). This is particularly impor-
tant given the severe consequences of untreated acute 
heart failure. While a lower specificity indicates a higher 
false positive rate, this trade-off can be acceptable in sce-
narios where the clinical priority is to identify as many 
high-risk patients as possible for further evaluation and 
intervention.

Additionally, Youden’s Index (YI = Sensitivity + Speci-
ficity − 1) was calculated as a supplemental performance 
metric to better evaluate the models’ abilities to balance 
sensitivity and specificity. Among the predictive mod-
els, GBM achieved the highest YI (0.687), reinforcing its 
superior capability to strike an optimal balance between 
true positive and true negative predictions. These results 
provide a more comprehensive understanding of model 
performance and further validate the robustness of 
GBM in clinical applications. Specifically, the YI values 
align with the previously reported advantages of GBM 
in sensitivity and precision, highlighting its reliability in 
minimizing misclassification and improving diagnostic 
accuracy. GBM’s superior performance in these areas 
suggests it is more reliable for identifying patients genu-
inely at risk, potentially reducing the likelihood of mis-
diagnosis and improving positive predictive accuracy. 
Given these considerations, GBM might often be more 
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suitable as a diagnostic tool for preoperative AHF in 
older people with hip fractures due to its enhanced abil-
ity to correctly classify affected individuals. However, the 
choice of the model in clinical research should still be 
dictated by comprehensive consideration of the actual 
application scenarios and needs. Factors such as the clin-
ical team’s familiarity with the model, the availability of 
computational resources, and the necessity for transpar-
ent, interpretable results all play critical roles in this deci-
sion. In environments where quick, clear decisions are 
paramount, and the stakes of misclassification are high, 
the enhanced sensitivity and precision of GBM could be 
particularly valuable. Nonetheless, the accessibility and 
straightforwardness of logistic regression might favor 
its use in contexts where simplicity and speed are pri-
oritized over maximal predictive accuracy. This nuanced 
approach to model selection, emphasizing a balance 
between statistical performance and practical applica-
bility, is essential for effectively implementing predictive 
models in real-world clinical settings.

In our study, the use of the acute heart failure nomo-
gram in clinical decision-making is critically evaluated 
through Decision Curve Analysis (DCA) and Clinical 
Impact Curves (CIC), presented in Fig. 6. These analyses 
are pivotal in understanding the balance between benefit 
and harm as the threshold probabilities for predicting 
acute heart failure are adjusted. As observed in panels A 
and B of Fig. 6, when the threshold probability is set lower 
than 0.25, there is a noticeable decrease in the net ben-
efit. This is indicative of a higher rate of false positives, 
where the model predicts heart failure in more patients 
than those who actually have the condition. Such a lower 
threshold might be employed in clinical settings where 
the cost of missing a true case of heart failure is deemed 
higher than the risk of unnecessary treatment for patients 
without the condition. However, this comes at the cost of 
increased interventions based on false positives, which 
could lead to unwarranted patient anxiety, unneces-
sary tests, and treatments. The Clinical Impact Curves 
in panels C and D further illustrate the effect of these 
thresholds on clinical practice. At lower thresholds, more 
patients are identified as at risk, potentially ensuring that 
no actual cases are missed. However, this also means 
treating many patients who do not need treatment, which 
can strain healthcare resources and affect the overall 
quality of care. Through detailed threshold analysis, our 
study underscores the importance of tailored thresh-
old settings based on specific clinical environments and 
patient populations. This tailored approach ensures that 
predictive models, while powerful, are applied thought-
fully to enhance patient outcomes and resource utiliza-
tion effectively.

In recent research, SHAP values have played a crucial 
role in interpreting complex machine learning models in 

the field of heart failure, helping to identify key predic-
tive factors that could impact patient outcomes [20]. For 
instance, studies have utilized SHAP values to highlight 
the importance of different clinical variables in predict-
ing the 3-year all-cause mortality rate among patients 
with chronic heart failure, providing clinicians with valu-
able model interpretations [21]. In assessing the risk of 
AHF preoperatively in older people with hip fractures, 
our machine learning model combined with SHAP values 
offers more objective and effective support for clinical 
decision-making. This approach allows us to quantify the 
contribution of each clinical feature variable to the pre-
diction model, which is particularly valuable in handling 
multivariate and complex medical data.

In our study, through the analysis combining machine 
learning models with SHAP, we found that acute myocar-
dial infarction, ventricular arrhythmia, pulmonary infec-
tion, and anemia are the four most important feature 
variables affecting the model’s predictions. These fac-
tors are closely related to the occurrence of AHF. Acute 
myocardial infarction, a significant manifestation of car-
diovascular disease, directly relates to a sharp decline 
in cardiac function, which is particularly important in 
the older people population as it may exacerbate exist-
ing cardiac burdens [22]. Ventricular arrhythmias could 
be an early warning of insufficient cardiac pump func-
tion, and in high-risk populations, it may precede heart 
failure [23]. Pulmonary infections can increase cardiac 
load, especially in older people with hip fractures requir-
ing high cardiac output, potentially exacerbating existing 
cardiac conditions [24]. Anemia, by reducing oxygen-car-
rying capacity, can affect the cardiac oxygenation status, 
thereby increasing the cardiac workload [25].

Through multiple variable partial dependence plot 
analyses of feature variables in our study, we observed 
that although each variable contributes uniquely to the 
risk prediction of heart failure, they are not isolated. 
There may be interactions among them, meaning the 
presence of certain variable combinations could increase 
or decrease the risk of AHF. For example, an anemic con-
dition could exacerbate the risk of heart failure caused by 
arrhythmias. This finding is consistent with other studies, 
such as Richard J. and colleagues, who found that patients 
with chronic kidney disease (CKD) and end-stage renal 
disease (ESRD) often have anemia and electrolyte imbal-
ances, which may promote electrical instability, induce 
reentrant arrhythmias, and ultimately lead to congestive 
heart failure or even induce sudden cardiac death [26]. 
By identifying these key predictive factors, we can bet-
ter understand and interpret the results of model pre-
dictions. These insights remind clinicians to promptly 
identify and focus on these key risk factors when assess-
ing the surgical risk of older people with hip fractures. 
More targeted strengthening of cardiac protection and 
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monitoring, optimizing preoperative management strate-
gies, improving overall treatment effectiveness, improv-
ing long-term prognosis, and preventing adverse events 
are advised.

Limitations
Although this study has constructed a risk prediction 
model for preoperative AHF in older people with hip 
fractures using machine learning methods, it still faces 
several limitations. First, the selection and scope of 
samples are restricted, as the study is based on the data 
of older people femoral fracture patients from a specific 
hospital. This selection may limit the general applicabil-
ity of the study results, especially under different regional 
and medical conditions. Second, this retrospective study 
may have missed some patients with heart failure not 
included in the sample, introducing a certain bias in sam-
ple selection. Third, the interpretability of machine learn-
ing models remains a concern. Despite the increased 
interpretability through SHAP analysis, machine learning 
models are often considered “black box” models, which 
may limit their application in clinical decision-making. 
Fourth, there may be important predictive variables not 
included in the model that could significantly affect the 
risk of heart failure. Fifth, although the study was divided 
into training and validation sets and cross-validation was 
performed, it still belongs to internal validation without 
external validation, which is a limitation.

Conclusion
In summary, we have constructed a prediction model 
for preoperative AHF in older people with hip fractures 
using LR and five machine learning methods, among 
which GBM exhibited the best performance in terms of 
AUC, accuracy, sensitivity, and F1 score. Additionally, the 
application of SHAP analysis has enhanced the interpret-
ability of the model, providing clinicians with an effective 
assessment method, significantly improving the scientific 
accuracy and precision of preoperative evaluation and 
decision-making by clinicians. Our research not only 
offers a new methodological perspective but also brings 
new thoughts and exploration directions to the fields of 
heart failure and orthopedic research, demonstrating the 
significant role of the big data era in advancing medical 
science development.
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