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Abstract 

Background Osteoporosis has become a significant public health concern that necessitates the application 
of appropriate techniques to calculate disease risk. Traditional methods, such as logistic regression,have been 
widely used to identify risk factors and predict disease probability. However,with the advent of advanced statistics 
techniques,machine learning models offer promising alternatives for improving prediction accuracy. What’s more, 
studies that use risk factors and prediction models for osteoporosis in high-risk groups for cardiovascular diseases are 
scarce. We aimed to explore the risk factors and disease probability of osteoporosis by comparing logistic regression 
with four machine learning models. By doing so,we seek to provide insights into the most effective methods for oste-
oporosis risk assessment and contribute to the development of tailored prevention strategies at high risk of cardiovas-
cular disease among old adults.

Methods We carried out a cross-sectional investigation of a high-risk group in cardiovascular patients. A logistic 
regression model and four common machine learning methods,DT,RF,SVM,and XGBoost were implemented to create 
a prediction model using information from 211 participants who met the inclusion requirements. Metrics for calibra-
tion and discrimination were used to compare the models.

Results In total,211 patients were enrolled. The AUCs were 0.751 for the logistic regression model,0.72 for the SVM 
model,0.70 for the random forest model,0.697 for the model XGBoost,and 0.69 for the decision tree model. The logistic 
regression model outperforms other models for machine learning. According to the logistic regression model,there 
were nine predictors,including age,sex,glucose,TG (triglyceride),fracture history,stroke history,and CNV (copy number 
variation) nssv659422, and low-sodium salt. A well-calibrated result of 0.199 on the Brier scale. The findings of the inter-
nal validation demonstrated the high degree of repeatability of the prediction model employed in this study.

Conclusions In this study, we discovered that when predicting osteoporosis,a number of machine learning tech-
niques fell short of logistic regression. In a specific population, we have innovatively developed a risk prediction 
model for osteoporosis events that integrates genetic and environmental factors, is an effective tool for assessing 
osteoporosis risk and can serve as the basis for specialized intervention approaches.
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Introduction
Osteoporosis is a systemic metabolic bone disease char-
acterized by decreased bone mineral density(BMD), 
altered bone strength and increased risk of fracture. 
Older males and postmenopausal women are prone to 
this disease [1]. At present, osteoporosis is defined as 
one of the 10 most important diseases affecting all man-
kind, and the increase in global life expectancy has led to 
a significant increase in the proportion of people at risk 
of osteoporosis [2]. According to the most recent epide-
miological report, 200 million people worldwide suffer 
from the negative impact of osteoporosis [3]. Over the 
previous 12 years, osteoporosis has become more com-
mon in China. In addition, the incidence of osteoporo-
sis increases significantly with age [4]. The prevalence in 
people over 50 years old was 19.2%, and that in people 
aged 65 years was 32% [5]. Therefore, it is important to 
have a suitable plan in place to predict the onset of osteo-
porosis and provide timely intervention to prevent it.

Unlike diseases that act on a single gene, osteoporo-
sis is the result of the interaction of multiple external 
and internal factors. According to Yang’s research [6], 
there is a tight correlation between the incidence of 
CVD in older persons over 60  years of age and BMD. 
Specifically,there is a negative nonlinear relation-
ship between the risk of cardiovascular disease and 
femur bone mineral density. The study population of 
our research article was a high-risk population for car-
diovascular diseases. Zelin [7] showed that consum-
ing calcium tablets,drinking alcohol,physical exercise, 
age,height,weight,body mass index,waist circumfere
nce,ethnicity,menopausal status,maternal history of 
osteoporosis,serum estradiol history, serum DHEA 
levels,and serum thyrotropin levels are influential factors 
for osteoporosis. Our study investigated whether low-
sodium diets may influence the development of osteopo-
rosis and whether salt intake (low-sodium salt or regular 
salt) could be used as a predictor in an osteoporosis risk 
assessment model [8, 9]. Moreover,we also examined 
how relevant CNVs may contribute to osteoporosis. 
Genetic factors may be crucial for the prevention and 
treatment of osteoporosis [10, 11].

Many countries and regions have carried out large-
scale research to establish corresponding risk assessment 
models for osteoporosis. Several prominent risk assess-
ment studies,including Osteoporosis Self-Screening 
Tool for Asians(OSTA) [12], Fracture Risk Assessment 
Tool (FRAX) [13] and Quantitative Ultrasound(QUS) 
[14] have provided extremely helpful advice for the pre-
vention and treatment of osteoporosis [15]. To improve 
their predictive power, osteoporosis prediction models 
have been developed in recent years that focus on cer-
tain groups or incorporate new factors. For example, 

Lee [16] et al. created an osteoporosis prediction model 
for patients with rheumatoid arthritis. Wu [17] used 
machine learning methods, which included genetic 
factors,sex,number of children and breastfeeding chil-
dren, age,place of residence,education level,measurement 
season,height,smoking status,hormone replacement 
therapy, serum ALB,hip circumference, vitamin B6 
intake and weight,to construct a prediction model for 
people over 40 years old at high risk of osteoporosis. 
Since Bhotla [18] et  al. reported that osteoporosis may 
be a risk factor for cardiovascular diseases,we built a rel-
evant diagnostic model for old population undergoing a 
low-sodium salt intervention,hoping to conduct a better 
and earlier intervention for the high-risk cardiovascular 
population.

Predicting osteoporosis is challenging due to the com-
plexity of the disease, which is influenced by numerous 
factors including genetics, lifestyle, and environmental 
factors. Conventional logistic regression(LR) methods 
have been used to construct osteoporosis prediction 
models [19, 20], but it may struggle to capture these 
complex relationships. With the advent of machine 
learning(ML),a data analysis method that predict out-
comes by "learning" from data is becoming more and 
more popular in predicting osteoporosis [21, 22]. The 
use of SHAP techniques makes each variable interpret-
able and quantifiable,machine learning is no longer 
solely a ‘black box’ process, but rather one with increas-
ing transparency and interpretability. For this study, we 
selected four well-established machine learning algo-
rithms: Support Vector Machines (SVM), Random 
Forest(RF), Decision Tree(DT), and Extreme Gradient 
Boosting(XGBoost)because of their strengths in handling 
high-dimensional data, non-linear relationships, and 
their ability to identify key risk factors. These algorithms 
can uncover hidden patterns and potential risk factors, 
leading to more accurate and personalized prediction 
of osteoporosis risk. However,whether sophisticated 
machine learning algorithms can outperform traditional 
generalized linear models in particular domains is still 
under debate.

This project team has conducted a 5-year low-sodium 
salt intervention trial (SSaSS) in the early stage [23, 
24], based on which a cross-sectional study was con-
ducted in the later stage. This study is innovative in its 
focus on osteoporosis risk prediction in a high-risk CVD 
population,a group that has been understudied in previ-
ous research;Unlike many studies that rely solely on tra-
ditional or ML methods,we directly compared logistic 
regression with multiple ML models. Additionally,our 
model incorporates both genetic and environmental pre-
dictors, offering a more comprehensive approach to oste-
oporosis risk assessment. On the basis of these studies,we 
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aimed to use machine learning and conventional logistic 
regression methods to develop a model incorporating 
data on environmental and genetic factors to predict the 
presence of osteoporosis and compare the results with 
those of previous studies.

Materials and methods
Ethics statements
The institutional review board of The First Hospital 
of China Medical University approved the study. The 
license numbers are 07–1.1–01- AF-SOP-07. Every indi-
vidual participant who participated in the study provided 
informed consent. All of the data were anonymized prior 
to the data.

Patients and study design
In this study, 6 villages (4 villages in the intervention 
group and 2 villages in the control group) were randomly 
selected from the cohort who participated in the SSaSS 
to complete the bone mineral density measurements 
and field investigations before and after the osteoporosis 
intervention. In the previou SSaSS study, villagers in the 
intervention group ate low-sodium salt and those in the 
control group ate regular salt. Low-sodium salt means 
the salt substitute, contains only 75% sodium chloride, 
while regular salt contains 100% sodium chloride. Spe-
cifically, we chose this salt substitute was to reduce 
sodium intake while maintaining palatability and ensur-
ing safety for participants. At the time of baseline survey, 
the salt consumption of each family was measured, and 
the intervention salt was distributed every three months, 
each time in full quantity. In addition, each time the salt 
was given we asked the subjects if they were eating the 
salt we gave them and if it was enough. These villagers 
are at high risk for cardiovascular diseases, which means 
they have a history of stroke or high blood pressure. 
The PASS15.0 software calculates that a minimum of 
184 people are needed. After investigation,a total of 211 
people were included in the study from six villages. The 
demographic,personal behavior and medical behavior 
data of the study subjects were collected through ques-
tionnaires and health examinations. Physiological and 
blood biochemical data related to BMD and osteoporosis 
were collected.

The inclusion criteria were as follows: patients with 
one of the following conditions were eligible for enroll-
ment: 1 patient with a history of stroke disease(preferred 
enrollment) and/or 2 patients aged ≥ 60  years with 
uncontrolled hypertension (systolic blood pres-
sure ≥ 140 mmHg on two measurements at the site if they 
were taking antihypertensive medication; systolic blood 
pressure ≥ 160 mmHg on two measurements at the site if 
they were not taking antihypertensive medication).

The exclusion criteria were as follows: ① members 
who were taking potassium-preserving diuretics, ② 
members who were taking potassium supplements, ③ 
members who had severe renal impairment, ④ mem-
bers whose family members could not be included in the 
study for other reasons, ⑤ members who seldom ate at 
home, and ⑥ members whose life expectancy was less 
than 6 months, as judged by a physician. ⑦ Family mem-
bers who were already living together were included in 
the study.

Data gathering
The dataset was established using Epidata 3.1 software. 
We included the following factors in the models that may 
be strongly related to osteoporosis to improve accuracy 
and allow for broader clinical use of the models.

1. We collected relevant patient demographic data, 
including age, sex, physiological variables [body 
mass index, waist–hip ratio, blood pressure, glucose, 
heart rate], living habits [smoking (≥ 1 cigarette/d 
for ≥ 1  year], alcohol consumption (≥ 100  mL/d of 
Baijiu with > 50% alcohol content or ≥ 500  mL/d of 
beer for ≥ 1  year], milk consumption, low-sodium 
salt (who were in the intervention group in the SSaSS 
study) [23, 24], The patient’s medical history includes 
information on medication use,heart disease,gout,dia
betes,stroke,fracture, hypertension,diabetes,fracture,
and history of hyperlipemia. Body mass index (BMI) 
was defined as body weight divided by height squared. 
The waist-hip ratio (WHR) was defined as the ratio of 
waist circumference to hip circumference. The ques-
tionare is within the supplementary files.
2. The following laboratory test results were col-
lected. Blood samples were collected at the Fourth 
Hospital of China Medical University. Low-density 
lipoprotein cholesterol (LDL-C), high-density lipo-
protein (HDL-C), total cholesterol (TC), and triglyc-
eride (TG) levels were measured,The blood samples 
were tested for CNV.
3. The selection of CNV sites was conducted through 
a comprehensive review of published literature and 
genome-wide association studies (GWAS) focusing 
on bone metabolism, osteoporosis, and cardiovas-
cular diseases. We integrated data from the Database 
of Genomic Variants (DGV,  http:// dgv. tcag. ca/ dgv/ 
app/ home) and the UCSC Genome Browser (http:// 
genome. ucsc. edu/) to identify relevant CNVs. The 
CNVs were prioritized based on the following cri-
teria: (1) previously reported associations with bone 
mineral density (BMD) or osteoporosis in at least 
two independent studies; (2) located within or in 
close proximity to genes functionally implicated in 

http://dgv.tcag.ca/dgv/app/home
http://dgv.tcag.ca/dgv/app/home
http://genome.ucsc.edu/
http://genome.ucsc.edu/
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bone metabolism, particularly within exon regions; 
(3) exhibiting a minor allele frequency (MAF) in 
the general population sufficient to ensure statistical 
power; and (4) documented in the ClinVar database 
with evidence supporting their clinical relevance 
and phenotypic correlations. This rigorous selection 
process ensured that the identified CNVs were both 
biologically plausible and statistically robust for sub-
sequent analyses.

Definition of outcomes
The BMD (g/cm2) of the study subjects was examined 
using dual-energy X-ray absorptiometry (DXA). For the 
purpose of our study, osteoporosis was defined as a fem-
oral neck BMD equal to or less than 2.5 standard devia-
tions (SDs) below the mean of a young adult reference 
group according to the guidelines of the World Health 
Organization (WHO) [25].

Statistical analysis
Participants in the osteoporosis and nonosteoporosis 
groups were subjected to statistical analysis. The inter-
quartile range (IQR) and median were used to define 
continuous variables that did not fit the distribution. 
While the mean ± standard deviation was used to char-
acterize continuous variables with a normal distribution. 
Percentages were used for the statistical description of 
categorical variables. After multicollinearity diagnosis, 
all indicators analysed in both univariable and multivari-
able models [26], and the forward and backward stepwise 
methods with AIC minimization were used to select the 
variables that were eventually included in the model.

The data were fitted using a logistic regression(LR) 
model, and a prediction model including genetic and 
environmental information was created. The predic-
tion model was assessed in terms of calibration and 
discrimination. The ability of the prediction model to 
discriminate between patients was assessed using the 
area under the curve (AUC). The calibration of the pre-
diction model was assessed using the Brier score and 
calibration plot [27]. We used the original dataset with 
bootstrap resampling to assess the performance using 
the C‐statistic and calibration plot. Apparent perfor-
mance was measured over the original sample used for 
model development before adjustment for bias due to 
model overfitting. Bootstrap performance was measured 
by 1000 bootstrap resamples with replacement over the 
original sample. Specifically, we randomly selected a sam-
ple of 211 subjects with replacement among the original 
cohort, measured the performance based on this random 
sample, and repeated the resampling and performance 
evaluation 1000 times to arrive at a best estimate. Test 

performance was defined as the performance of the mod-
els from the bootstrap samples when applied to the origi-
nal sample. Expected optimism used to quantify bias due 
to overfitting was calculated as the difference between 
the bootstrap performance and test performance. The 
optimism‐corrected performance (bias‐corrected per-
formance) was calculated as the apparent performance 
minus the expected optimism [28]. For every threshold 
probability, the net benefits were displayed using decision 
curve analysis (DCA). The nomogram tool was used to 
visualize the model.

Four distinct model types were used to create machine 
learning models: decision tree (DT), random forest 
(RF), support vector machine (SVM), and extreme gra-
dient boosting (XGBoost). In two datasets, 20% and 
80% split rates were randomly selected from among the 
patients. Twenty percent of the patients were then used 
for testing. The parameters of the four machine models 
are shown in supplementary table  S1. The model qual-
ity of classification problems can be evaluated based on 
several performance metrics of the confusion matrix, 
including true positives (TPs),true negatives (TNs), false 
positives (TNs), and true positives (TPs). FP, false nega-
tive rate (FN), accuracy rate, subject characteristic area 
under the working curve (AUC), accuracy rate, recall 
rate and F1 score,where accuracy rate = TP/(TP + FP), 
recall rate = TP/(TP + FN),F1 = (2 × accuracy x recall)/
(accuracy + recall). The above indices are comprehen-
sively evaluated for each machine learning model, and 
the model with the best performance is selected as the 
final differential diagnosis model. Feature importance 
was interpreted using Shapley Additive Explanations 
(SHAP). The improvement in classification performance 
of the new model compared to the old model was evalu-
ated using the Net Reclassification Improvement (NRI) 
and the Integrated Discrimination Improvement (IDI).

Experimental materials and methods

(1) Experimental materials

 ①Blood genomic DNA rapid extraction kit (San-
gon, B518233);②DNA extraction kit (B518764) 
for deep processing products with magnetic bead 
method;③Blood genome DNA extraction kit with 
magnetic bead method (B618763); ④UNlQ-10 
TRIzol total RNA extraction kit (Shengong Bio, 
B511321);⑤Maxima Reverse Transcriptase (Thermo 
Scientific, EP0743);⑥Agarose B (BBI, A600014);⑦4S 
Red Plus nucleic acid stain (10,000X aqueous solu-
tion) (BBI, A606695);⑧GeneRuler DNA Lad-
der Mix (Thermo Scientific, B300721);⑨10 × PCR 
Buffer (without  Mg2+:100  mM Tris–HCl pH 8.8 at 
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25℃;⑩500  mM KCl, 0.8%(v/v)Nonidet) (Biological, 
B511321);⑪Maxima Reverse Transcriptase (Thermo 
Scientific, EP0743); ⑫Agarose B (BBI, A600014); 
⑬4S Red Plus nucleic acid stain (10,000X aqueous 
solution, BBI, A600014);

(2) Experimental method

① The reaction solution was prepared in accordance 
with the manufacturer’s instructions.
② The solution was centrifuged as soon as the bubbles 
were eliminated.
③ A digital PCR system called the QX200 Droplet 
was utilized to identify and examine the outcomes. 
The following reaction temperature and duration 
were used.

Results
Statistical analysis process
The analysis of this study is shown in the supplemen-
tary figureS1. After collecting the data, we built machine 
learning and logistic regression models respectively to 
compare their performance. The strategies for building 
machine learning and traditional logistic regression mod-
els are different. Consider the question of sample size, 
when we built machine learning we grouped them in an 
8:2 ratio.

Participants characteristic
A total of 211 participants were included in the study. The 
general condition, physiological indicators, psychological 
condition, behavior, and lifestyle of the participants are 
presented in Table 1. The average age of the participants, 
including 92 men (43.60%) and 119 women (56.40%), was 
66.04 ± 8.60 years. Among these 91 osteoporosis patients, 
120 did not have osteoporosis.

The CNV frequency in the groups with and without 
osteoporosis is displayed in Table 2. A total of 219 CNVs 
associated with osteoporosis were found; 8 of these were 
found in previous studies, and 211 were found in official 
experiments. Of them, 134 instances of nssv659422 were 
duplicates, while the remaining 77 instances (either one 
or three copies) had variations in copy number.

Risk factor selection
All indicators were analyzed using univariate logistic 
regression and multifactor logistic analysis, as shown 
in Table  3. Because the univariate analysis in this study 
showed that there were fewer risk factors, if only the sta-
tistically significant factors in the univariate analysis were 
included as independent variables in the multivariate 
logistic regression analysis, important risk factors would 
likely be missed. Therefore, this study is to include all 

variables for analysis and screen meaningful variables. 
There were statistically significant differences in age, sex, 
BMI, heart rate, and alcohol consumption according to 
the univariate analysis. Multivariate analysis revealed 
that sex, low-sodium salt, Tg, stroke history, and CNV 
nssv659422 were significantly different (P<0.05).

Development and validation of a nomogram 
with the logistic regression model
Forward and backward stepwise methods with AIC 
minimization were used to select the variables that were 
eventually included in the model. Table  4  displays the 
outcomes of the multivariate logistic regression analysis. 
The prediction model included age, sex,glucose, hyper-
glycemia status,cholestral, heart rate,fracture history, 
stroke history,CNV nssv659422, low-sodium salt. Among 
them, the osteoporosis prediction model had independ-
ent risk factors for aging, sex, cholestral, and low-sodium 
salt. (P<0.05).We named this newly developed model 
Bonepredict.

The logistic model equation is:
Logit(p)=−5.819+0.048age+1.328 sex+0.072glucose-

0.173Cholestral+0.025Heart rate-0.614CNV nssv659422+ 
0.767stroke history+0.843 fracture history-1.084 low-
sodium salt

For clinical use, we developed a nomogram model to 
predict osteoporosis as shown in Fig.  1. The points for 
the risk of osteoporosis, glucose, fracture history, CNV 
nssv659422, heart rate, stroke history,Cholestral,age 
(years),low-sodium salt,sex,and total points were 
arranged from top to bottom on the abscissa. At the 
same time, the situation of the first observation object in 
the data set is displayed on the graph and marked with 
red dots, and its corresponding points are also marked 
with red dots. The variables glucose = 7.4, fracture his-
tory = no, CNV nssv659422 = no, heart rate = 62, stroke 
history = yes, cholestral = 0.89, age = 69, low sodium 
salt = yes, sex = male. After adding the corresponding 
points, the total points = 509, the corresponding prob-
ability is 0.311.

As shown in the Fig.  2, the area under the auc is 
0.751(0.6859–0.8166.)Youden’s index was 1.399, the sen-
sitivity was 0.82, the specificity was 0.58, and the ROC 
curve cutoff value was 0.363.

An appropriate model calibration was shown by the 
calibration plot, which showed that the anticipated prob-
ability and the actual probability were similar (Fig. 3). The 
model’s Brier score was 0.199,which is smaller than 0.25. 
The results showed that the model had good calibration 
degree and prediction consistency.

The old adults might obtain a good net benefit from 
the prediction model, according to the decision curve 
analysis(DCA) [29]. For example, it should be noted that 
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the logistic regression model shows clinical utility over a 
range of risk thresholds, when the prediction probabil-
ity threshold of the nomogram model is 0–0.75,particu-
larly between 0.05 and 0.60, as it provides a greater net 
benefit compared to treating all or none of the patients, 

suggesting that the nomogram model has good clinical 
applicability (Fig. 4).

Clinical impact curve (CIC) analysis was performed, as 
shown in Fig.  5, to evaluate the clinical applicability of 
the risk prediction nomogram. For example,at the X-axis 

Table 1 Characteristics of the participants

a Median
b Interquartile range
c Body mass index
d waist-to-hip ratio
e Systolic blood pressure
f Diastolic blood pressure
g Triglyceride
h Total cholesterol
i High-density lipoprotein cholesterol
j Low-density lipoprotein cholesterol
k Copy number variation

*p < 0.05

Characteristics Total(N = 211) With osteoporosis(N = 91) Without 
osteoporosis(N = 120)

Age[years,M a (IQR b )]* 68(11.00) 70(3.00) 66 (12.00)

Gender*
 Male (n, %) 92(43.60%) 26 (28.60%) 66 (55.00%)

 Female (n, %) 119(56.40%) 65 (71.40%) 54 (45.00%)

BMI c  [kg/m 2 ,  M a (IQR b )] * 32.00(6.03) 33.56(6.55) 31.22 (5.46)

WHR d [M a (IQR b )] 0.88 (0.07) 0.87(0.09) 0.88(0.06)

Blood pressure
  SBPe[mm HG, x ± s] 167.867±1.72 168.74± 2.67 167.20± 2.25

  DBPf[mm HG, x ± s] 97.043±0.87 97.21±1.25 96.91±1.20

Heart rate [times/minute,Ma(IQRb)]* 78.50(17.50) 82.00(17.50) 76.25 (18.75)

Glucose [(mmol/L,  Ma(IQRb)] 6.50(2.70) 6.60 (3.10) 6.45 (2.10)

Medical history
 Fracture (n, %) 27(12.80%) 15(16.50%) 12 (10.00%)

 Hypertension (n, %) 131(62.08%) 57(62.60%) 74 (61.70%)

 Gout (n, %) 38(18.01%) 16(17.60%) 22 (18.30%)

 Diabetes (n, %) 47(22.27%) 24(26.40%) 23 (19.20%)

 Stroke (n, %) 50(23.70%) 24.(26.40%) 26 (21.70%)

 Hyperlipemia (n, %) 8(37.91%) 5(5.50%) 3 (2.50%)

 Heart diseases (n, %) 66(31.28%) 32(35.20%) 34 (28.30%)

Living habit
 Smoking (n, %) 68(32.22%) 25(27.50%) 43 (35.80%)

 Drinking alcohol (n, %) * 58(27.49%) 18(19.80%) 40 (33.40%)

 Drinking milk (n, %) 60(28.43%) 24(26.40%) 36 (29.90%)

Low-sodium salt (n, %) 135(63.98%) 54(59.30%) 81(67.50%)

Medication use (n, %) 54(25.60%) 26(28.60%) 28(23.30%)

Blood lipid parameter
  TGg[mmol/L, M a (IQR b )] 1.94(1.76) 1.82(1.99) 1.97 (1.54)

  TCh [mmol/L, M a (IQR b )] 4.94(1.39) 4.91(1.13) 5.00(1.51)

 HDL-Ci[mmol/L,M a (IQR b )] 1.33(0.56) 1.25(0.58) 1.27 (0.56)

 LDL-Cj[mmol/LM a (IQR b )] 3.12(0.64) 3.16(1.21) 3.09 (0.69)

CNV k nssv659422(n, %) 77(36.49%) 27(29.67%) 50(41.67%)
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risk threshold of 0.4, the number of people at risk with 
the clinical prediction model we constructed is about 
520, and the actual number of people at risk is about 
300, with a loss-benefit ratio of 75%. When the threshold 
probability is greater than 65% of the prediction score 
probability, the prediction model determines that the 
high-risk group of osteoporosis is highly matched with 
the actual group of osteoporosis, which confirms the 

high clinical utility of the prediction model. Combind 
DCA and CIC,when the threshold is between 0.65–
0.75,the prediction model is not only has a good benifit 
but also has a effectiveness.

To validate the model internally, bootstrap resampling 
was used, with an AUC of 0.75(Mean of 1000 bootstrap 
samples). The internal validation findings show that the 
prediction model applied in this study has good robust-
ness and consistency. The results of the bootstrap resa-
mpling are displayed in Fig.  6 and Table  5. Using 500 
bootstrap samples over the full dataset, the expected 
optimism of the model was 0.014 for the c-statistic and 
0.185 for the calibration slope. The apparent c-statistic 
for Osteoporosis was 0.751. The optimism-corrected 
c-statistic was 0.737, the calibration slope was 0.815, and 
the calibration-in-the-large for all performance measures 
was < 0.001, all with standard error < 0.001.

Table 2 CNV frequency in the osteoporosis and non-
osteoporosis groups

Number of copies CNV nssv659422

1 copy (%) 2 copies (%) 3 copies (%)

Osteoporosis group (%) 3(3.30%) 64(70.33%) 24(26.37%)

Non-osteoporosis group (%) 9(7.50%) 70(58.33%) 41(34.16%)

Table 3 Univariate analysis and multivariate analysis of risk factors for participants

Among them, there was multicollinearity between triglyceride and other variables, which was not included in the multi-factor analysis

Variable Univariate analysis Multivariate analysis

OR 95%CI P -value OR P -value 95%CI

Age 1.04 [1.01,1.08] 0.019 1.05 0.06 [1,1.1]
Gender 0.33 [0.18,0.58]  < 0.001 0.26 0.011 [0.09,0.74]
BMI 1.09 [1.02,1.17] 0.008 1.03 0.657 [0.91,1.15]
WHR 0.22 [0,19.53] 0.507 0.14 0.566 [0,109.93]
Blood pressure
 SBP 1 [0.99,1.01] 0.658 1.01 0.245 [0.99,1.03]
 DBP 1 [0.98,1.02] 0.868 0.99 0.788 [0.96,1.03]
Heart rate 1.03 [1,1.05] 0.019 1.03 0.056 [1,1.06]
Glucose 1.07 [0.98,1.16] 0.144 1.07 0.247 [0.95,1.21]
Living habit
 Smoking 0.68 [0.38,1.23] 0.199 1.30 0.499 [0.6,2.81]
 Drinking alcohol 0.49 [0.26,0.94] 0.03 0.68 0.37 [0.29,1.58]
 Drinking milk 0.84 [0.45,1.54] 0.563 0.73 0.399 [0.36,1.51]
 Low-sodium Salt 0.7 [0.4,1.24] 0.222 0.34 0.006 [0.15,0.73]
 Medication use 1.31 [0.71,2.45] 0.388 1.08 0.842 [0.49,2.39]
Blood lipid parameter
 TG 0.85 [0.64,1.12] 0.241
 TC 0.9 [0.79,1.04] 0.145 0.78 0.022 [0.63,0.96]
 HDL-C 0.94 [0.53,1.66] 0.83 0.68 0.397 [0.28,1.66]
 LDL-C 1.07 [0.8,1.43] 0.645 1.11 0.562 [0.78,1.58]
CNV nssv659422 0.59 [0.33,1.05] 0.074 0.49 0.046 [0.25,0.99]
Medical history
 Fracture 1.78 [0.79,4.01] 0.166 2.36 0.089 [0,88,6.31]
 Hypertension 1.04 [0.59,1.83] 0.886 0.73 0.417 [0.35,1.55]
 Gout 2.27 [0.53,9.75] 0.271 3.31 0.185 [0.56,19.47]
 Diabetes 1.34 [0.69,2.6] 0.38 1.01 0.982 [0.41,2.51]
 Stroke 1.3 [0.68,2.45] 0.426 2.38 0.041 [1.04,5.47]
 Hyperlipemia 0.95 [0.47,1.93] 0.888 1.08 0.872 [0.41,2.84]
 Cardiovascular 1.04 [0.59,1.83] 0.886 0.73 0.417 [0.35,1.55]
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Performances of different models
Tables 6 and 7 which presents a summary of the data detail-
ing the models used to predict osteoporosis, displays the 
specific outcomes of the various models. Among them, the 
SVM model performed with the highest accuracy (0.754), 
followed by the XGBoost (0.721),DT ranked the lowest 
(0.651).The XGBoost model performed well with respect 
to precision (0.667), followed by LR (0.600), SVM (0.560), 
DT(0.530),RF(0.523). The Logistic regression(LR)models 
showed the greatest sensitivity, with a value of 0.751, and 
the XGBoost model showed the lowest sensitivity (0.588). 
Considering that precision and sensitivity are often contra-
dictory, we calculated the F score, an evaluation indicator 
that weighed precision and sensitivity. The top 3 F score 
models were DT(0.73), LR(0.69),and RF (0.63).

Among these statistics is the area under the curve 
(AUC), which is a common metric used to evaluate the 

performance of a diagnostic model. It measures the 
model’s ability to distinguish between individuals with 
and without the condition. AUC can be interpreted as 
the probability that a randomly selected positive case 
will have a higher predicted probability score than a ran-
domly selected negative case. The AUC illustrated that 
logistic regression had the best predictive performance, 
with AUC values of 0.751. The details are shown in 
Table  6. Overall, the best-performing model was Logis-
tic regression,followed by SVM and RF. The AUCs of the 
different machine learning models were shown in supple-
mentary figureS3.

Supplementary figure S2 shows the SHAP plots for 
four machine learning models. Although the nine most 
important variables of the four models are not exactly 
the same,some similarities can be found with logistic 
regression models,sex,age,glucose,heart rate and frac-
ture history are all important predictors. In the XGBoost 
model, there are BMI and DBP variables; In the RF 
model, there are BMI, DBP, WHR, drink variables. In 
the support vector machine model,there are SBP, heart 
diseases,hypertension diseases variables. In the DT 
model,there are BMI,HDL-C,LDL-C,SBP variables. 
These important predictors differ from logistic regression 
models. What’s more, in support vector machine models, 
CNV nssv659422 and low sodium salt are both impor-
tant predictors. The SHAP plots show that lower levels 
of these two predictors (blue dots) were associated with a 
lower probability of Osteoporosis(SHAP value < 0),these 
are also the two most important factors to explore in this 
cross-sectional survey.

Table 4 The predictors included in the logistic regression model

*p < 0.05

Variable β Wald Odds ratio(95%CI) P-value

Age* 0.048 5.416 1.049(1.008–1.092) 0.020

Sex* 1.328 15.366 3.773(1.942–7.328)  < 0.001

Glucose 0.072 1.951 1.074(0.972–1.188) 0.162

Cholestral* −0.173 3.848 0.841(0.707–1.000) 0.050

Heart rate 0.025 3.490 1.025(0.999–1.052) 0.062

CNV nssv659422 −0.614 3.296 0.541(0.279–1.050) 0.069

Stroke history* 0.767 3.855 2.153(1.001–4.631) 0.050

Fracture history 0.843 3.188 2.322(0.921–5.856) 0.074

Low-sodium Salt * −1.084 8.830 0.338(0.166–0.692) 0.003

Fig. 1 Nomogram of the logistic regression model
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Combined AUC and sensitivity,we ultimately selected Bone-
predict, a model developed using logistic regression, as our 
final predictive tool. To assess the clinical utility of Bonepredict, 
we compared its performance with three widely used osteopo-
rosis risk assessment tools: the Osteoporosis Self-Assessment 
Tool (OSTA), the Fracture Risk Assessment Tool (FRAX), and 
Quantitative Ultrasound (QUS). Bonepredict demonstrated 

superior discriminative ability, achieving a higher AUC in the 
development cohort compared to OSTA (AUC = 0.62), FRAX 
for major osteoporotic fractures (AUC = 0.71), and QUS 
(AUC = 0.68). Furthermore, Bonepredict exhibited improved 
calibration and significantly better net reclassification improve-
ment (NRI) and integrated discrimination improvement (IDI) 
when compared to these existing tools.

Fig. 2 ROC curve of the logistic regression model

Fig. 3 Calibration plot of the logistic regression model. Notes:Calibration plot (excellent calibration as the observed outcomes are close to the 45° 
line). Apparent performance = final prediction model on the full data; bias-corrected performance = apparent performance minus the expected 
optimism estimated from the bootstrap samples
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Discussion
Low sodium salt is the main focus of studies on salt inter-
ventions aimed at lowering hypertension. Nevertheless, 

there is no conclusive evidence that low sodium salt 
will lower the risk of osteoporosis. A prospective cohort 
study by Martin O’Donnell [30] involving participants 

Fig. 4 DCA curve of the logistic regression model

Fig. 5 Clinical impact curve of the logistic regression model
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from 17 countries, revealed a U-shaped relationship 
between low-sodium salt consumption and osteoporo-
sis risk, suggesting that both excessive and insufficient 
intake may elevate the risk. However, Yuan [31] reported 
that eating more low sodium salt increased the chance of 
developing osteoporosis. In this study, we investigated 

the potential of low-sodium salt intake as a novel predic-
tor in an osteoporosis risk assessment model. Notably, 
this predictor has not been previously incorporated into 
existing models(e.g.FRAX), highlighting the unique con-
tribution of our research to the field.

Osteoporosis development affects individual sodium 
iron concentrations. SCN4A encodes the NaV1.4 chan-
nel, which acts primarily in skeletal muscle. SCN4A gene 
mutation mainly leads to rapid inactivation of sodium ion 
channels [32]. The inactivation of channels may be incom-
plete or slow, which will cause the continuous opening 
of channels and the continuous inflow of sodium ions, 
directly resulting in an increase in the concentration of 
 Na+ in the cell. To maintain the conservation of the intra-
cellular charge, the concentration of  Na+ increases. The 
exchange of  Na+/Ca2+ and  Na+/H+ increased, resulting in 
an increase in the concentration of  Ca2+ in the intracellular 
environment and a decrease in the concentration of  Ca2+ in 
the extracellular environment, thus enhancing the function 
of osteoclasts and significantly improving bone absorp-
tion, indirectly promoting the occurrence of osteoporosis. 
Therefore, the SCN4A gene [11, 33] CNV nssv659422 was 
utilized for model development in this study. The mecha-
nism diagram is shown in supplementary figure S4.

Fig. 6 The ROC curve after internal validation using bootstrap resampling(times = 1000). Note: the gray shade showed the mean AUC of bootstrap 
samples,the red line showed the apparent AUC 

Table 5 Internal validation-bootstrap results for the full dataset

The bootstrap procedure leads to estimates of the optimismcorrected 
performance, which is calculated as apparent performance minus optimism. 
Means and empirical standard errors (SE, based on standard deviations 
over samples) are shown. Five hundred bootstrap repetitions were used for 
calculation of both the mean and SE (SEB). The test performance is defined as 
the performance of the models from the bootstrap samples when applied to 
the original sample. The expected optimism was calculated as the difference 
between bootstrap performance and test performance. The optimism-corrected 
performance was defined as apparent performance minus optimism

C- Statistic
Mean ± SE

Calibration slope
Mean ± SE

Apparent performance 0.751 1

Bootstrap performance 0.756 ± 0.0008 1

Test performance 0.742 ± 0.0003 0.815 ± 0.0066
Expected performance 0.014 ± 0.0008 0.185 ± 0.0066
Optimisim-corrected
performance

0.737 ± 0.0008 0.815 ± 0.0066
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Lifelong risk factors such as genetics can aid in the 
early detection of high-risk individuals and prompt life-
style changes that are essential for osteoporosis preven-
tion and treatment. In bone mineral prediction models, 
SNPs, or single-nucleotide variations, have been incor-
porated as genetic factor predictors [34]. However, copy 
number variation was not included as a genetic feature 
in earlier prediction models. Since CNVs span a sig-
nificantly greater number of nucleotides in the genome 
than do SNPs and because of their wide distribution 
throughout the human genome, it has been established 
that CNVs are linked to osteoporosis [33, 35–37]. Fran-
cine et al. assessed all CNVs from a meta-analysis based 
on GWAS for genomic regions linked to osteoporosis to 
determine whether they were connected to important 
osteoporosis variance. In this study, multivariate logis-
tic regression analysis was used to identify and examine 
one CNV locus. The final prediction model incorporated 
the CNV nssv659422 (SCN4A gene), which was shown 
to significantly (P < 0.05) increase the likelihood of devel-
oping osteoporosis. Due to sample size and budgetary 
limitations, we were unable to identify more CNV loci; 
however, our results indicate that when genetic factors, 

such as CNVs, are used as predictors, model prediction 
accuracy can be improved by fully accounting for the 
combined impact of genetic and nongenetic components. 
Unlike OSTA and FRAX, which primarily rely on clini-
cal risk factors, Bonepredict incorporates genetic mark-
ers (CNVs), enabling a more personalized and precise 
risk assessment. Notably, the SHAP analysis for the SVM 
model revealed that both low-sodium salt intake and 
CNV nssv659422 are significant predictors of osteoporo-
sis risk. This finding underscores the importance of inte-
grating dietary and genetic factors in osteoporosis risk 
assessment models.

In recent years,artificial intelligence (AI) used to 
diagnose osteoporosis from risk factors in clinical data 
and proposing protocols,we created four mainstream 
machine learning models (DT,SVM,XGBoost and RF). 
SVM was chosen for its ability to maximize class sepa-
ration margins and avoid overfitting, critical given 
our small sample size (n = 211). RF was selected for its 
ensemble learning approach, which enhances accuracy 
while managing missing data and identifying key predic-
tors via feature importance rankings. Its stability with 
limited samples further justified its use. DT served as 

Table 6 Comparison the parameters of models for prediction of osteoporosis

XGBoost extreme gradient boosting, RF random forest, DT Decision tree, SVM support vector machine, LR logistic regression model, AUC  Area under the curve of ROC

Accuracy = (TP + TN)/(TP + TN + FP + FN)

Sensitivity = TP/(TP + FN)

Specificity = TN/(TN + FP)

Precision = TP/(TP + FP)

F1 = 2*Precision*Recall/ (Precision + Recall)

TP = true positive

TN = true negative

FP = false positive

FN = false negative

AUC Accuracy Sensitivity
(Recall)

specificity precision F1

XGBoost 69.7% 72.1% 58.8% 72.2% 66.7% 62.5%

RF 70.0% 58.1% 54.0% 79.8% 52.3% 63.0%

DT 69.0% 65.1% 75.0% 79.4% 53.0% 73.0%

SVM 72.0% 75.4% 70.5% 77.3% 56.0% 59.5%

LR 75.0% 68.0% 82.0% 58.0% 60.0% 69.0%

Table 7 Performance comparison of bonepredict with existing osteoporosis risk assessment tools

Model AUC Brier NRI P IDI P

FRAX 0.71 0.212 0.027 p < 0.05 0.153 p < 0.05

QUS 0.68 0.223 0.036 p < 0.05 0.162 p < 0.05

OSTA 0.62 0.238 0.040 p < 0.05 0.188 p < 0.05

Bonepredict 0.75 0.199
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an interpretable baseline model, providing transparent 
decision pathways for clinical insights despite its over-
fitting tendency. XGBoost was prioritized for its struc-
tured data optimization, gradient-boosting architecture 
(capturing predictor interactions), and regularization 
techniques to prevent overfitting. While other machine 
learning techniques, such as neural networks, could have 
been considered, they were less suitable for our study. 
Neural networks typically require larger sample sizes to 
achieve optimal performance and are less interpretable.

Following a comprehensive evaluation of model per-
formance metrics,including the Area Under the Curve 
(AUC) and sensitivity,we selected the logistic regression 
model as the finnal model. Despite testing four machine 
learning algorithms (DT,SVM, RF, and XGBoost), logis-
tic regression achieved the highest AUC (0.75) with 
only nine variables, demonstrating greater clinical 
practicality, particularly when integrated with nomo-
grams for risk visualization. The superior performance 
of logistic regression compared to some machine learn-
ing algorithms in our study may be attributed to several 
factors:first, the relatively small sample size (n = 211) in 
our dataset may have limited the ability of more com-
plex ML models to fully capture the underlying pat-
terns without overfitting. Logistic regression, with its 
simpler structure and fewer parameters, is less prone to 
overfitting in such scenarios. Second, the relationships 
between the predictors and the outcome (osteoporosis) 
in our dataset may be predominantly linear or addi-
tive, which aligns well with the assumptions of logistic 
regression. Third, the interpretability of logistic regres-
sion allowed for more effective feature selection and 
model refinement, ensuring that only clinically relevant 
predictors were included, whereas ML models often 
prioritize statistical patterns over therapeutic relevance. 
Finally, the absence of highly interactive or non-linear 
effects in our dataset may have reduced the advantage of 
ML algorithms, which typically excel in capturing such 
complex relationships. Consistent with Christodoulou 
et al.’s findings [38], our results underscore that logistic 
regression often matches or exceeds ML performance in 
clinical prediction tasks, particularly with limited data. 
While ML algorithms hold theoretical promise, their 
advantages diminish in datasets lacking intricate inter-
actions or large sample sizes.

A few of the benefits of this study are as follows:first, 
we enhanced the predictive framework by incorporat-
ing novel predictors, including copy number variations 
(CNVs) associated with osteoporosis and low-sodium 
salt intake. This integration not only improves model 
performance but also provides valuable insights into 
the combined influence of genetic and environmen-
tal factors on osteoporosis risk. Second,to obtain the 

estimated probability values for the incidence of osteo-
porosis, regression models were utilized. This approach 
proved more suitable for real-world scenarios and 
enabled treatments in persons at high risk. Third, our 
model was specifically tailored for populations at high 
risk of cardiovascular disease (CVD), addressing a criti-
cal gap in existing tools(e.g.,FRAX) that primarily tar-
get general populations. By focusing on this high-risk 
group, our study lays the groundwork for more per-
sonalized and effective low-sodium salt interventions. 
Finally,artificial intelligence used to diagnose osteo-
porosis from risk factors in clinical data and propos-
ing protocols. This innovative approach paves the way 
for the development of AI-driven tools in osteoporosis 
management.

However, the study had a number of shortcomings:first, 
the sample size (n = 211) constrained our ability to 
develop sex-specific risk prediction models and limited 
statistical power for machine learning model. It may 
also compromise model accuracy. Second, the model 
was built for a population at high risk of cardiovascu-
lar disease. It cannot, however, be generally applicable 
or applied to a larger population. Third,as our study is 
a cross-sectional analysis,we are unable to determine a 
causal link. Fourth,the model’s performance was consid-
ered acceptable with an AUC < 80%,and the accuracy is 
not very high,so it still has a room to improve.Finally,we 
restricted our analysis to widely used machine learning 
algorithms (DT, RF, SVM, XGBoost),which may not fully 
represent the spectrum of available methods.

To address these limitations, future research should 
prioritize:first, multi-center longitudinal studies with 
repeated measurements of sodium intake (e.g.,24-
h urinary sodium excretion) and bone mineral den-
sity (e.g.,annual DXA scans) are needed to confirm 
these findings and elucidate the temporal relationship 
between sodium intake and bone health. Second, ran-
domized controlled trials (RCTs) could further clarify 
the causal effects of low-sodium interventions on bone 
metabolism in this population. Third,expanded datasets 
encompassing diverse populations, including under-
represented subgroups (e.g., severe osteoporosis cases), 
to enhance model generalizability. Finally,to attain bet-
ter performance, additional learning should also be 
investigated. Advanced techniques such as synthetic 
minority oversampling (SMOTE) or transfer learning 
to mitigate biases from imbalanced or limited data.

Conclusions
Our algorithm for predicting osteoporosis events in 
high-risk cardiovascular patients performed well. The 
model may be used to predict osteoporosis episodes by 
taking into account hereditary(CNV nssv659422)and 
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environmental factors(sex,age,triglyceride levels,heart 
rate,stroke,history,fracture history). Its superiority may 
stem from its interpretability and suitability for the 
dataset’s size,reducing overfitting risks while maintain-
ing transparency for clinical decision-making. It can 
serve as the cornerstone for individualized intervention 
methods and aid in basic osteoporosis prevention and 
management. The inclusion of the genetic variant CNV 
nssv659422 significantly enhanced predictive accuracy, 
underscoring the value of combining genetic and clinical 
variables for risk stratification. This tool holds promise 
for personalized osteoporosis prevention, enabling clini-
cians to identify high-risk patients for targeted interven-
tions (lifestyle modifications, early screenings).

In conclusion,a low-sodium salt logistic regression 
prediction model with good discrimination,calibration, 
and clinical utility based on sex,age,triglyceride level, 
heart rate, stroke history, fracture history, and CNV 
nssv659422 may prove to be a valuable clinical tool 
for predicting osteoporosis risk in patients with high 
cardiovascular disease. Because it provides the best 
performance,the logistic regression model outperforms 
the machine learning model. In the future,to provide 
risk evaluations for certain populations and validate our 
technique, we will need to obtain external samples in the 
future. We could aslo exploring additional genetic fac-
tors or integrating a wider variety of machine learning 
techniques. What’s more,another important avenue for 
future research would be to conduct longitudinal studies 
to track changes over time.
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