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Abstract
Objectives  This study aims to develop sarcopenia risk prediction models for Chinese older adults at different time 
intervals and to identify and compare modifiable factors contributing to sarcopenia development.

Methods  This study used data from 3,549 participants aged 60 and older in the China Health and Retirement 
Longitudinal Study (CHARLS). Sarcopenia status was evaluated by the AWGS2019 algorithm. Full models for 2- and 
4-year sarcopenia risk, considering multifactorial baseline variables, were compared with modifiable models. Eight 
machine learning (ML) algorithms were used to build these models, with performance evaluated by the area under 
the receiver operating characteristic curve (AUC-ROC). SHapley Additive exPlanations (SHAP) was applied for model 
explanation.

Results  The average age of participants was 67.0 years (SD = 6.1), with 47.8% being female (1,696 participants). The 
ML models achieved moderate performance, and eXtreme Gradient Boosting (XGBoost) emerged as the best model 
for both the full and modifiable models in the 2-year prediction, with AUCs of 0.804 and 0.795, respectively (DeLong 
test, P = 0.665). In contrast, in the 4-year prediction, the Light Gradient Boosting Machine (LightGBM) performed 
best with AUCs of 0.795 and 0.769, respectively (P = 0.053). The SHAP analysis highlighted gender and estimated 
glomerular filtration rate (eGFR) as the most important predictors in both the full and modifiable models.

Conclusions  Prediction models based on modifiable factors at different time intervals can help identify older 
Chinese adults at high risk of sarcopenia. These findings highlight the importance of prioritizing functional capacity 
and psychosocial determinants in sarcopenia prevention strategies.
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Introduction
Sarcopenia is a progressive skeletal muscle disorder char-
acterized by the loss of muscle mass and strength [1]. It 
is associated with an increased risk of adverse outcomes 
such as malnutrition, physical disability, osteoporosis, 
falls, fractures, and even death [2, 3]. Although diagnos-
tic criteria for sarcopenia have been established, effective 
risk prediction models remain scarce. Evidence suggests 
that muscle mass, strength and physical performance 
can substantially improve through targeted interven-
tions like physical exercise, lifestyle adjustments, and 
dietary changes [4, 5]. This highlights the importance of 
constructing risk prediction models using representative 
ageing datasets to identify important risk factors, which 
can provide critical insights for intervention strategies.

Among the risk factors for sarcopenia, modifiable fac-
tors variables that can be altered through behavioural or 
lifestyle changes—play a crucial role in slowing down or 
reversing disease progression [6]. In contrast, non-mod-
ifiable factors, such as age, sex, genetic predispositions, 
and anthropometric measurements, serve as intrinsic 
determinants that establish baseline risk but cannot be 
altered [7]. Identifying modifiable factors like physical 
activity levels, dietary intake, and other lifestyle behav-
ioural early offers a significant opportunity to intervene 
and mitigate the impact of sarcopenia, as these factors 
allow for developing of prevention strategies tailored to 
high-risk populations [8].

In risk prediction models, the ability of Machine Learn-
ing (ML) models to process high-dimensional datasets, 
identify critical variables, and uncover complex relation-
ships between input variables has made them powerful 
tools in predicting health outcomes [9]. Clinical Predic-
tion Models that utilize ML allow for integrating multiple 
factors to predict individual outcomes, offering deeper 
insights into disease risk determinants and improving 
the precision of prognosis [10]. However, many machine 
learning models are perceived as “black boxes,” making 
them difficult for clinical decision-makers to interpret. 
Techniques like Shapley Additive Explanations (SHAP), 
which evaluates and ranks the important predictors, 
have helped enhance the transparency of these models, 
allowing for more interpretable results [11]. Interpretable 
machine learning approaches focusing on modifiable fac-
tors could play a key role in guiding community-based 
sarcopenia prevention strategies. Current sarcopenia risk 
prediction models often focus on a single time interval 
[12, 13], which limits understanding how risk factors may 
change over time. Research shows that the performance 
of prediction models is closely related to the length of the 
prediction window [14]. Since sarcopenia is a dynamic, 
progressive condition that requires time to develop, 
important factors may differ across varying time frames. 
Developing prediction models tailored to different time 

intervals can improve risk assessment accuracy and help 
identify modifiable factors, enabling more precise inter-
ventions for effective sarcopenia prevention.

The current study aims to (1) use ML methods to 
develop different time intervals prediction models for 
sarcopenia risk among community-dwelling older adults 
in China; (2) identify and compare modifiable factors that 
play important roles in the development of sarcopenia so 
that preventive strategies can be developed accordingly.

Methods study
Design and participants
The data were obtained from the China Health and 
Retirement Longitudinal Study (CHARLS), a nation-
ally representative longitudinal study of people aged 45 
years or above. Using a stratified multistage probability-
proportional-to-size random-cluster sampling method, 
17,707 participants across 28 provinces were recruited at 
baseline in 2011. The CHARLS was approved by the Eth-
ics Review Committee of Peking University and written 
informed consents were obtained from all participants. 
Detailed design, sampling methods and data collection 
have been previously reported [15].

Due to the time limitations of blood sample collection 
in the CHARLS, which only covered the years 2011 and 
2015, and the collection of physical examination indica-
tors (e.g., height, weight) being limited to 2011, 2013, and 
2015, this study selected the 2011, 2013, and 2015 waves 
of CHARLS data for analysis. The 2011 wave was used 
as the baseline, and the 2013 and 2015 waves were con-
sidered follow-up endpoints, respectively. Participants 
were excluded if any of the following criteria were met: 
(1) sarcopenia status at baseline; (2) age below 60 years 
at baseline (Year 2011); (3) missing outcome data (sarco-
penia diagnosis information) at baseline or in either of 
the two follow-up years; (4) loss to follow-up during the 
study period; (5) more than 20% of variable information 
missing. Finally, 3,549 participants were included in both 
the 2011–2013 (2-year) and 2011–2015 (4-year) predic-
tion studies. Details of the sample selection process are 
shown in Fig. 1.

Outcome variables and input variables
The outcome of the study was the occurrence of sarco-
penia in 2013 and 2015. Based on the algorithm recom-
mended by the AWGS2019 [16], individuals with weak 
muscle strength and low muscle mass/physical perfor-
mance were regarded as being sarcopenic. Handgrip 
strength was measured by a trained examiner using a 
Yuejian™ WL-1000 dynamometer (Nantong Yuejian 
Physical Measurement Instrument Co., Ltd., Nantong, 
China) in kilograms [15]. Participants were tested in a 
standing position with the shoulder flexing at 90° and the 
arm straight out. Every participant was measured twice 
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on both hands and verbal encouragement was given 
during the test. Handgrip strength was recorded as the 
maximum value of these four measurements. If a partici-
pant was unable to perform grip strength measurement 
on one hand due to health reasons (swelling, inflam-
mation, severe pain, or injury), values measured on the 
other hand would be used. A cut-off value of 18  kg in 
women and 28 kg in men was used to define weak muscle 
strength [16].

Appendicular skeletal muscle mass (ASM) was calcu-
lated using a previously validated anthropometric equa-
tion in Chinese population [17]:

	
ASM = 0.193 × weight (kg) + 0.107 × height (cm)

−4.157 × gender − 0.037 × age (years) − 2.631

where for male, gender was set to 1, otherwise to 2. 
This equation has a high coefficient of determina-
tion (R2 = 0.90) and low bias (SEE = 1.63  kg), and is in 
good agreement with dual- energy X-ray absorptiom-
etry (DXA) [17]. The height-adjusted appendicular skel-
etal muscle mass ( ASM/Ht2) was calculated using the 
ASM divided by the square of height in meters. Low 
muscle mass was defined as < 5.4 kg/m2 in women and 
< 7 kg/m2 in men [16]. Considering that the CHARLS 
walking distance is 2.5 m, which does not align with the 
recommended 6-meter walking distance, we referred to 
other literature and assessed physical performance using 
the 5-time chair stand test, with a time of ≥ 12 s indicat-
ing low physical performance [16, 18, 19].

Input variables were first obtained based on previously 
reported sarcopenia-related variables and data availability 

Fig. 1  Flowchart of This Study
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in CHARLS [15], followed by reference to other literature 
to exclude input variables with more than 20% missing 
information [20]. Finally, 92 input variables were finally 
chosen as candidate features at baseline (Year 2011). 
Those variables were collected through questionnaires 
or measurements. Variables collected by questionnaires 
included the following aspects: (1) Demographic factors 
such as age and sex. (2) Health status factors: hyperten-
sion, diabetes, stroke, arthritis, etc. (3) Lifestyle factors: 
smoking, alcohol consumption, sleep duration and lei-
sure activities. (4) Medication factors: antihypertensive 
medications, diabetes medications, stroke medications, 
psychotropic medications, etc. (5) Psychological factors: 
depressive symptoms and cognitive function. (6) Socio-
economic factors: life satisfaction, self-reported health 
status, health satisfaction, hospitalization history, etc. 
Variables collected by measurements mainly included: 
(1) Physical functions: balance ability. (2) Anthropomet-
ric Indicators: Body Mass Index (BMI), arm length, knee 
height. (3) Vital signs: systolic, diastolic, lung function. 
(4) Blood factors: White Blood Cell (WBC), Hemoglobin 
(HGB), Hematocrit (HCT), Mean Corpuscular Volume 
(MCV), etc. Assignments of variables are presented in 
Supplementary Table S1.

Development and evaluation of prediction model
This study constructs prediction models strictly follow-
ing the TRIPOD process [21]. In full model, a total of 92 
baseline variables were included as input variables. To 
evaluate the performance of the model that includes only 
modifiable indicators, the modifiable models were con-
structed based on only modifiable variables, excluding 
non-modifiable factors such as age, sex, knee height, arm 
length, etc., and the performances were compared to full 
models at different time intervals.

Eight commonly used ML classification models were 
selected to build risk prediction models for sarcopenia 
(Fig. 1), i.e., logistic regression (LR), Decision Tree (DT), 
Support Vector Machine (SVM), Random Forest (RF), 
Adaptive Boosting (AdaBoost), eXtreme Gradient Boost-
ing (XGBoost), Light Gradient Boosting Machine (Light-
GBM) and Artificial Neural Network (ANN). Among 
them, LR is a classical statistical method using the logit 
function to capture the relationship between variables, 
offering simplicity, fast training, and transparency [22]. 
DT, a tree-based algorithm, makes decisions by recur-
sively splitting data into subsets based on feature values 
[23]. SVM optimizes data separation by maximizing the 
interval hyperplane, providing stability [24]. RF, Ada-
boost, XGBoost, and LightGBM are ensemble techniques 
using decision trees, based on bagging and boosting, to 
reduce underfitting and overfitting risks [25]. ANN, a 
basic neural network model, excels at parallel processing 
for complex nonlinear relationships [26].

Data preprocessing was performed as follows: The data 
was first divided into training and test sets in a 7:3 ratio. 
Missing data were imputed using the MissForest algo-
rithm, a commonly used robust method based on itera-
tive random forests that can handle both continuous and 
categorical variables [27]. To avoid data leakage and bias, 
data imputation, class balancing (using the Synthetic 
Minority Over-sampling Technique [SMOTE] [28]), and 
feature selection were exclusively applied to the training 
set. The least absolute shrinkage and selection operator 
(LASSO) method was applied for feature selection, which 
identifies important predictors by shrinking regression 
coefficients through L1 regularization [29]. Features with 
non-zero coefficients, determined using 5-fold cross-
validation to optimize the penalty term (λ), were selected 
[30]. Each ML model underwent 5-fold cross-validation 
and Bayesian optimization method for hyperparameter 
tuning. Model evaluation was performed on the test set 
and the model with the highest AUC-ROC in the test set 
was selected as the optimal model [31]. DeLong’s test was 
performed to assess the differences in AUC. The calibra-
tion of the prediction model was determined according 
to the Brier score, with a smaller score indicating a bet-
ter fit. The Shapley Additive exPlanations (SHAP) value 
was used to evaluate the contribution of each predictor in 
prediction models [32]. Partial Dependence Plots (PDPs) 
were also employed to visualize the relationship between 
individual predictors and the predicted outcome, illus-
trating how changes in specific predictors affect the mod-
el’s predictions. Additionally, local SHAP was applied to 
explain individual predictions by quantifying the impact 
of each predictor on the model’s output for specific 
instances.

Statistical analysis
Descriptive statistics were applied to show baseline 
characteristics of the enrolled participants. Data were 
presented as median (interquartile range) or frequency 
(percentage) as appropriate. Group comparisons were 
performed by Welch-cox test or chi-square test.

Descriptive analysis and variance analysis were per-
formed using R version 4.3. Data preprocessing, feature 
selection, ML model building and evaluation were done 
using Python 3.7. A P value < 0.05 was considered as hav-
ing statistical significance.

Results
Descriptive analysis results
According to the inclusion and exclusion criteria, 3,549 
participants were included in the 2-year (2011–2013) and 
4-year (2011–2015) sarcopenia risk prediction cohorts. 
The sample selection process is illustrated in Fig. 1. The 
average age of participants was 67.0 years (SD = 6.1), with 
47.8% being female (1,696 participants). After 2 years of 
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follow-up, 461 individuals (12.99%) developed sarco-
penia, while after 4 years, 470 individuals (13.24%) had 
progressed to sarcopenia. For the 2-year prediction, the 
LASSO regression algorithm selected 24 variables for 
the full model and 22 for the modifiable model, out of 
92 baseline candidate features (Supplementary Table S2, 
S4, and Figure S1). Similarly, for the 4-year prediction, 22 
variables were selected for the full model and 24 for the 
modifiable model (Supplementary Table S3 and S5).

Performance evaluation of prediction models
Eight ML models were developed to predict 2-year and 
4-year sarcopenia risk based on variables determined by 
feature selection. The performances of eight ML models 

on the test set are shown in Table  1. In the 2-year pre-
diction, XGBoost emerged as the best model for both full 
and modifiable models, with AUCs of 0.804 and 0.795, 
and Brier scores of 0.100 and 0.106, respectively. In the 
4-year prediction, LightGBM was the optimal model for 
both full and modifiable models, with AUCs of 0.795 and 
0.769, and Brier scores of 0.121 and 0.139, respectively. 
Notably, for predictions at different time points, the 
models using only modifiable factors performed compa-
rably to the full models (DeLong test, P = 0.665 and 0.053, 
respectively) (Supplementary Table S6 and S7).

Table 1  Performance of the eight ML model for predicting sarcopenia on the test set
Model Threshold AUROC (95%CI) Accuracy Sensitivity Brier score
Full model-2-year
  LR 0.117 0.792 (0.739–0.837) 0.860 0.865 0.104
  DT 0.154 0.746 (0.683–0.787) 0.841 0.845 0.109
  SVM 0.141 0.734 (0.672–0.795) 0.864 0.864 0.109
  RF 0.123 0.790 (0.745–0.829) 0.853 0.863 0.105
  AdaBoost 0.402 0.784 (0.730–0.827) 0.841 0.839 0.176
  XGBoost 0.114 0.804 (0.750–0.853) 0.872 0.875 0.100
  LightGBM 0.063 0.778 (0.732–0.822) 0.861 0.865 0.106
  ANN 0.111 0.779 (0.730–0.817) 0.863 0.869 0.105
Full model-4-year
  LR 0.616 0.779 (0.736–0.820) 0.573 0.981 0.281
  DT 0.222 0.750 (0.699–0.802) 0.731 0.919 0.189
  SVM 0.366 0.786 (0.741–0.829) 0.683 0.953 0.121
  RF 0.498 0.782 (0.701–0.832) 0.676 0.958 0.188
  AdaBoost 0.500 0.749 (0.706–0.814) 0.789 0.915 0.239
  XGBoost 0.072 0.793 (0.759–0.837) 0.807 0.903 0.129
  LightGBM 0.010 0.795 (0.758–0.835) 0.845 0.882 0.121
  ANN 0.009 0.730 (0.665–0.778) 0.777 0.885 0.174
Modifiable model-2-year
  LR 0.111 0.783 (0.736–0.815) 0.865 0.869 0.104
  DT 0.224 0.756 (0.715–0.799) 0.854 0.862 0.112
  SVM 0.366 0.786 (0.741–0.829) 0.683 0.953 0.184
  RF 0.129 0.786 (0.751–0.833) 0.833 0.813 0.105
  AdaBoost 0.441 0.786 (0.750–0.832) 0.866 0.863 0.202
  XGBoost 0.069 0.795 (0.757–0.827) 0.859 0.864 0.106
  LightGBM 0.066 0.766 (0.723–0.813) 0.860 0.865 0.109
  ANN 0.089 0.787 (0.754–0.840) 0.863 0.861 0.104
Modifiable model-4-year
  LR 0.427 0.759 (0.707–0.804) 0.718 0.932 0.187
  DT 0.143 0.638 (0.560–0.702) 0.725 0.896 0.227
  SVM 0.123 0.685 (0.633–0.734) 0.844 0.862 0.119
  RF 0.237 0.768 (0.713–0.818) 0.802 0.888 0.131
  AdaBoost 0.499 0.728 (0.661–0.776) 0.768 0.897 0.291
  XGBoost 0.232 0.759 (0.711–0.808) 0.756 0.911 0.155
  LightGBM 0.074 0.769 (0.715–0.812) 0.834 0.877 0.130
  ANN 0.026 0.706 (0.642–0.765) 0.742 0.892 0.207
Note: AUROC, receiver operating characteristic curve; ML, machine learning; LR, logistic regression; DT, decision tree; SVM, support vector machine; RF, random 
forest; AdaBoost, adaptive boosting; XGBoost, eXtreme Gradient Boosting; LightGBM, light gradient boosting machine; ANN, Artificial Neural Network
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Predictors importance and variables interpretation
The SHAP values for the optimal models showed that 
gender was the most important predictor in the full mod-
els at different time intervals, while estimated glomerular 
filtration rate (eGFR) was the most important predictor 
in the modifiable models (Fig. 2). The common important 
predictors in the full model at 2 and 4 years were gen-
der, age, education, lung function, depressive symptoms, 
BMI, platelets, Glucose, and eGFR. In both the 2-year 
and 4-year modifiable models, the common important 
predictors were eGFR, education, lung function, balance, 
depressive symptoms, BMI, C-Reactive Protein (CRP), 
and platelets.

We further analyzed the impact of the top three 
important predictors of the four models on the predic-
tion of sarcopenia using PDP plots (Fig.  3). Specifically, 
females, older age, higher eGFR, and elevated depressive 

symptom scores were associated with higher predicted 
probabilities of sarcopenia. In contrast, Improved lung 
function and greater education attainment were linked 
to a reduced likelihood of sarcopenia. To better under-
stand individual predictions, we applied SHAP’s local 
explanation method. Supplementary Figure S2 illus-
trates the risk predictions for sarcopenia patients using 
the XGBoost and LightGBM models. Figures S1A and 
S1C show true positive cases with high-risk predictions, 
while Figures S1B and S1D show true negative cases with 
correct low-risk predictions. For example, Figure S1A 
demonstrates a true positive case, where predictors such 
as gender (female), age (older), eGFR (lower), and lung 
function (worse) significantly increased the risk of sar-
copenia, while depressive symptom scores (lower) had a 
slight protective effect. Despite this, the cumulative effect 
of the risk-increasing factors dominated, resulting in a 

Fig. 2  Predictors Importance Ranking (Top 15) in the 2- and 4-Year Prediction by SHAP
Note: Full Model-2-Year (A), Modifiable Model-2-Year (B), Full Model-4-Year (C), and Modifiable Model-4-Year (D)
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prediction of high risk for sarcopenia, which was consis-
tent with the actual diagnosis.

Discussion
Based on follow-up data from CHARLS, eight ML mod-
els were developed and validated to assess the 2-year and 
4-year risk of sarcopenia in community-dwelling indi-
viduals aged 60 years or older using the full set of vari-
ables at baseline versus modifiable variables, respectively. 
Among them, XGBoost exhibited the best performance 
in both 2-year risk models, while LightGBM performed 
optimally in both 4-year risk models. The SHAP values 

for the optimal models showed that gender was the most 
important predictor in the full models at different time 
intervals, while eGFR was the most important predictor 
in the modifiable models.

The performance of all prediction models was mod-
erate, with all 2-year risk models performing better 
than the 4-year risk model, and the performance of the 
full 2-year model was optimal. Our findings are consis-
tent with previous studies that have shown a decline in 
model performance with extended prediction periods 
[33]. The 2-year model may be more effective at captur-
ing changes in sarcopenia because health changes are 

Fig. 3  Partial Dependence Plots for Key Predictors of Sarcopenia Risk
Note: Gender: 1 = Male, 2 = Female; Education: 0 = Illiterate, 1 = Primary, 2 = Middle and above
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typically more pronounced and easier to detect in the 
short term. In contrast, long-term prediction models are 
often influenced by more complex health changes and 
external factors, which can lead to a reduction in predic-
tion performance. In terms of machine learning methods, 
although the AUROC values of the XGBoost and Light-
GBM models outperform traditional LR, the difference 
is not statistically significant. However, the overall per-
formance of these models is better in terms of sensitiv-
ity, accuracy and Brier score metrics, suggesting that they 
may offer potential advantages in practical applications. 
Future research should focus on exploring the scalabil-
ity and robustness of these methods in larger and more 
diverse cohorts to fully realize their potential.

In terms of full model and modifiable model perfor-
mance, we found a decrease in modifiable model perfor-
mance, but the decrease was not significantly different. 
This is very encouraging and means that groups at high 
risk of sarcopenia can be identified early and interven-
tions targeted at these important modifiable factors can 
be made. The common important predictors in the full 
model at 2 and 4 years were gender, age, education, lung 
function, depressive symptoms, BMI, platelets, Glucose, 
and eGFR, that is, all of them were key determinants of 
the risk of sarcopenia at different time intervals. Among 
them, the association of education, lung function, and 
platelets with sarcopenia has been less studied. Education 
has been well-related to lifestyle and health conditions, 
and existing studies have manifested that higher levels of 
education are associated with a lower risk of sarcopenia 
in Western countries [34]. Lung function reflects overall 
health status and directly affects the body’s motor func-
tion [35]. It has been shown that patients with COPD 
are often associated with limited physical activity and 
malnutrition, leading to a net loss of muscle protein and 
increasing the risk of sarcopenia [36, 37]. As a common 
indicator of inflammation and oxidative stress [38], the 
identification of platelets provided supportive evidence 
for the role of inflammation in sarcopenia. Emerging evi-
dence has suggested a link between chronic low-grade 
inflammation and loss of muscle mass [39]. Addition-
ally, other sarcopenia-related factors such as obesity and 
high body fat mass, have also exhibited positive correla-
tions with platelets [40]. Such association was consis-
tent with the finding of a previous cross-sectional study, 
which showed a positive association between plate-
lets and sarcopenia among Asian women aged 65 years 
or above [40]. In the 2- and 4-year modifiable models, 
the common important predictors were eGFR, educa-
tion, lung function, balance, depressive symptoms, BMI, 
CRP, and platelets. Among these, eGFR emerged as the 
most important factor. The eGFR reflects renal func-
tion and metabolic capacity of muscles within the body 
[41]. As sarcopenia is accompanied by increased protein 

catabolism, the burden on renal function is also intense. 
Current studies have reported that skeletal muscle [42], 
lean mass [41], body fat and distribution are correlated to 
eGFR [43]. Yet, studies on the direct association between 
eGFR and sarcopenia are scarce while our results have 
provided supportive evidence for such association.

For risk prediction models for sarcopenia over the next 
2 years (whether full or modifiable model), MMSE, alco-
hol consumption, and sleep duration at noon emerged 
as unique important predictors. MMSE reflects changes 
in cognitive ability, and its decline is associated with 
reduced activity and loss of muscle mass. A meta-analysis 
that included 15 cross-sectional studies found an associa-
tion between sarcopenia and mild cognitive impairment 
and dementia [44]. Significantly lower MMSE scores 
after 1 year of follow-up in older adults with sarcopenia 
than in the non-sarcopenic older population have been 
reported in other studies [44]. The relationship between 
alcohol consumption, a common lifestyle factor, and 
sarcopenia is controversial. For example, the results of a 
meta-analysis showed that alcohol consumption was not 
a risk factor for the development of sarcopenia [45]. One 
possible explanation for this is that differences in drink-
ing patterns and dose-response relationships may play a 
role. Similarly, sleep duration at noon, another lifestyle 
factor, may influence sarcopenia risk indirectly by affect-
ing daily vitality and behavioural patterns [46]. In con-
trast, predictors specific to the risk prediction model for 
the next 4 years were Glycated Hemoglobin (HbA1c), 
Mean Corpuscular Volume (MCV), and HGB. HbA1c 
reflects long-term glycemic control, and higher levels 
may be associated with metabolic disorders and chronic 
diseases, long-term factors that may accelerate the pro-
gressive decline in muscle function. A longitudinal study 
that followed 482 older adults with diabetes for 3 years 
found that elevated HbA1c levels were associated with an 
increased risk of sarcopenia [47]. The results of the Bal-
timore Longitudinal Aging Study showed that elevated 
HbA1c levels were associated with a decline in muscle 
strength after 7.5 years [48]. MCV may indicate malnu-
trition or underlying chronic disease, slowly affecting 
muscle mass decline. Furthermore, lower HGB may lead 
to skeletal muscle hypoxia, which in turn affects muscle 
metabolism and regenerative capacity [49]. Briefly, pre-
dictors specific to the 2-year model were more likely to 
emphasize the importance of cognitive and lifestyle fac-
tors in predicting of short-term sarcopenia, whereas pre-
dictors specific to the 4-year model were more likely to 
be associated with chronic disease and changes in long-
term health status.

The strengths of this study are the large sample size 
from a nationwide survey and the inclusion of full and 
modifiable models at different time intervals. However, 
this study has some limitations. First, since the diagnoses 
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of sarcopenia in this study was based on the criteria pro-
posed by the AWGS 2019, one should be cautious when 
generalizing our findings to Western populations as dif-
ferent diagnostic criteria were used. Secondly, this study 
was limited to identifying associations between sarco-
penia and potential factors, and it should be noted that 
causal inferences cannot be inferred solely based on 
the results. Third, there was a limited percentage of the 
group aged ≥ 80 years and more participants with lower 
literacy levels in this study. Finally, this study was lim-
ited to internal validation, without external validation to 
assess the generalizability of the models. To address this, 
future research will aim to incorporate samples from 
diverse regions for external validation, especially older 
adults with high age and literacy levels, to enhance the 
robustness of the findings.

Conclusion
In conclusion, this study developed prediction models 
based on modifiable factors at different time intervals 
to identify older adults at high risk of sarcopenia. These 
models can provide valuable insights for early detection 
and targeted prevention efforts. From a clinical interven-
tion perspective, sarcopenia prevention strategies should 
specifically focus on functional capacity and psychosocial 
determinants to effectively mitigate sarcopenia risk.
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