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Abstract 

Alzheimer’s disease (AD) is a complex, progressive, and irreversible neurodegenerative disorder marked by cogni‑
tive decline and memory loss. Early diagnosis is the most effective strategy to slow the disease’s progression. Mild 
Cognitive Impairment (MCI) is frequently viewed as a crucial stage before the onset of AD, making it the ideal period 
for therapeutic intervention. AD is marked by the buildup of amyloid-beta (Aβ) plaques and tau neurofibrillary tangles 
(NFTs), which are believed to cause neuronal loss and cognitive decline. Both Aβ plaques and NFTs accumulate 
for many years before the clinical symptoms become apparent in AD. As a result, in this study, CerebroSpinal Fluid 
(CSF) biomarker information is combined with hippocampal volumes to differentiate between MCI and AD. For this, 
a novel two-stage hybrid learning model that leverages 3D CNN and the notion of a Fuzzy and Machine learning 
model is proposed. A 3D-CNN architecture is employed to segment the hippocampus from the structural brain 
3D-MR images and quantify the hippocampus volume. In stage 1, the hippocampus volume is passed through thir‑
teen machine learning models and fuzzy clustering for classifying symptomatic AD and healthy brain (Normal Control 
- NC). The CSF data is fuzzified to capture the inherent uncertainty and overlap in clinical data. The identified sympto‑
matic AD data in the stage1 are further classified into MCI and AD with the aid of a fuzzified CSF biomarker in stage 2. 
The experimental work presented in this study utilized the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. 
The proposed hybrid model achieved an average accuracy of 93.6% for distinguishing between NC and symptomatic 
AD and 93.7% for discriminating between MCI and AD. This approach enhances diagnostic accuracy and provides 
a more comprehensive assessment, allowing for earlier and more targeted therapeutic interventions.

Keywords  Mild Cognitive Impairment, Hippocampal volume, Cerebrospinal Fluid, Biomarkers, Fuzzy clustering, 
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Introduction
Alzheimer’s disease (AD) is a progressive neurodegenera-
tive disease characterized by memory loss, cognitive and 
linguistic impairments, and behavioral alterations [1]. For 
diagnostic assessment, the AD progression is classified 
into three stages: Normal control (NC), mild cognitive 
impairment (MCI), and Alzheimer’s disease (AD). NC 
represents a healthy brain. MCI is an intermediate stage 
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identified by evident cognitive deterioration, such as 
increasing forgetfulness and difficulties with complicated 
activities, but daily life remains manageable. AD causes 
severe cognitive decline, including extensive memory 
loss, reduced daily functioning, language difficulties, 
and behavioral changes that frequently necessitate sub-
stantial help. The unattended AD can lead to dementia, 
profoundly impacting an individual’s ability to function 
independently​ [2].

The diagnostic process for AD includes neuroimaging, 
standard laboratory testing, neurological examination, 
and a comprehensive patient history [3]. These tools col-
lectively contribute to the assessment and understanding 
of the disease. Biomarkers are the measurable indications 
of a biological state or condition that are extracted from 
the assessment of imaging data and methods. Biomark-
ers  play a pivotal role in the diagnostic process and are 
essential for understanding health, disease develop-
ment, and therapy effectiveness. Biomarkers of Alzhei-
mer’s disease pathology can be classified into imaging 
and non-imaging data. Imaging modalities like Magnetic 
Resonance Imaging (MRI), Positron Emission Tomogra-
phy (PET), and Diffusion Tensor Imaging (DTI) provide 
detailed insights into brain pathology. In contrast, non-
imaging modality includes biospecimens (blood and cer-
ebrospinal fluid - CSF) and clinical data (cognitive tests 
and genetic information). AD is marked by the buildup 
of amyloid-beta (Aβ) plaques and tau neurofibrillary tan-
gles (NFTs), which are believed to cause neuronal loss 
and cognitive decline. In AD, both Aβ plaques and NFTs 
seem to accumulate for many years before the clini-
cal symptoms become apparent [4, 5]. CSF biomarkers, 
particularly Aβ42, t-tau, and p-tau, are crucial for the 
early and accurate diagnosis of AD. They offer significant 
advantages in detecting AD before clinical symptoms 
appear, monitoring disease progression, and evaluating 
the efficacy of treatments [6].

In recent years, diagnosis of neurodegenerative diseases 
has been carried out through state-of-the-art technology 
such as Computer-aided diagnosis (CAD) and Artificial 
Intelligence (AI) tools. CAD harnesses a diverse array of 
brain imaging modalities to facilitate accurate diagno-
sis. Notably, imaging modalities show remarkable effec-
tiveness in analyzing the structural patterns of the brain 
and discerning the volumetric differences between the 
neurotypical brain physiology of NC and AD [7]. Also, 
CAD utilizes significant biomarkers from neuroimages 
like grey and white matter volume [1, 8], hippocampus 
volume [9, 10] and regional cortical thickness to identify 
AD. The influence of imaging techniques on the detec-
tion of MCI from AD is quite limited, regardless of the 

number of imaging modalities investigated [11].  MCI is 
a challenging condition to detect because it often occurs 
before visible symptoms appear, making it critical to 
detect but elusive stage in the progression of AD. Despite 
these challenges, research has shown that CSF biomark-
ers, hippocampal volume and entorhinal volume are ana-
lyzed in identifying the progression of patients from one 
stage of AD to the next [12]. A study has shown that CSF 
biomarkers are highly effective in predicting the progres-
sion from MCI to AD. Specifically, high levels of CSF 
Total tau (T-tau), Phosphorylated tau (P-tau) and low 
levels of Amyloid β-protein (Aβ)42 can accurately iden-
tify MCI patients likely to develop AD. These biomarkers 
have also shown predictive value in asymptomatic elderly 
individuals, where reduced Aβ42 levels indicate a higher 
risk of developing dementia [13].

Machine learning (ML) models in AI are another alter-
native to CAD. By combining ML with biomarker data, 
researchers can identify complex patterns and relation-
ships that would be difficult to detect using traditional 
methods. The standard outline followed by ML models 
for AD detection involves a systematic flow encompass-
ing preprocessing, segmentation, Feature Extraction 
and Classification. In studies [9, 14, 15] used volume of 
interest (VOI) derived from MRI as a critical biomarker 
for AD classification. ML models like Support Vector 
Machines (SVM) [10, 16] and the conventional K-Nearest 
Neighbour (KNN) [17] have been employed as a classi-
fier based on the VOI from MRI. However, challenges 
arise due to inherent uncertainties in neuroimaging data, 
such as noise and variations, impacting classification 
accuracy. To address this, researchers have incorporated 
fuzzy logic, which provides a framework for modeling 
and handling uncertainties, resulting in more robust and 
accurate classification [10]. ML approaches face chal-
lenges due to complex and inaccurate feature engineer-
ing, which is time-consuming and requires extensive 
expertise. Additionally, handcrafted feature extraction 
can miss important data patterns, affecting model perfor-
mance and accuracy [14, 15]. On the other hand, Deep 
learning (DL) offers a more robust and efficient solution 
by automating feature extraction and learning directly 
from raw image data. This end-to-end approach enables 
DL models to capture intricate patterns and relationships 
within the images [18–20], surpassing the limitations 
of ML in terms of generalizability and accuracy. Slice 
wise volumetric features extracted from the Hippocam-
pal region using a hybrid convolutional neural network 
(CNN) with Deep Neural Networks (DNN) effectively 
differentiated NC and AD [21]. For instance, DNN has 
achieved impressive 80–90% accuracy in differentiating 
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between MCI and AD [22] Moreover, advanced architec-
tures like 3D-CNN combined with stacked bidirectional 
long short-term memory FSBi-LSTM have demonstrated 
remarkable results, distinguishing AD from NC, pro-
gressive MCI (pMCI) from NC, and stable MCI (sMCI) 
from NC with accuracies of 94.82%, 86.36%, and 65.35%, 
respectively.

Early onset of AD is essential for timely therapeu-
tic interventions, better planning and improved system 
management with AD [23]. When diagnosed late (after 
considerable cognitive decline), the efficacy of interven-
tions is limited. Because of the subtlety of the symptoms 
and the lack of sophisticated diagnostic tools to detect 
early-stage namely mild cognitive impairment (MCI), it is 
often missed or misdiagnosed [24].

Current clinical practices heavily rely on cognitive tests 
like the Assessment Scale-Cognitive subscale (ADAS-
Cog) [25] and patient history to assess the severity of 
cognitive symptoms in AD. However, these methods 
often fail to detect early disease stages. Diagnostic prac-
tices vary widely across regions due to differences in 
knowledge, training, and resources, hindering early and 
accurate AD diagnosis [23].

Our survey shows that detecting MCI is crucial for 
delaying the progression of AD. Combining imaging 
biomarkers with CSF biomarkers provides a more holis-
tic view of the patient’s condition, allowing for a better 
assessment of disease progression.

Our contribution is a two-stage hybrid learning model 
with dual biomarkers: hippocampal volume and CSF. The 
model’s precision in identifying MCI, the critical transi-
tional stage before AD, facilitates earlier and potentially 
more effective therapeutic interventions. The novelty of 
our work lies in utilizing 3D CNN for segmentation of 
hippocampus from MR imaging, fuzzy notion for remov-
ing the uncertainty in the data, and machine learning 
for classification which combines the strengths of each 
method, leading to a robust and sophisticated diagnos-
tic tool. The sequential structure of our work unfolds 
with Section  2, which elaborates the methodologies of 
the baseline and proposed models. Sections " 3D- CNN 
Architecture for Segmentation" and 4 present the experi-
mental setup and results of these models, highlighting 
the effectiveness of the two-stage hybrid model in detect-
ing MCI.

Methods and materials
Data preprocessing
The standard data format for medical imaging research 
is considered in the Digital Imaging and Communica-
tions in Medicine (DICOM) format. The MR images, in 

DICOM format, have metadata in each slice regarding 
the resolution, thickness, and spacing among the slices. 
Any change in the metadata due to external changes 
or changes in the size of the patient’s brain will affect 
the MR image resolution. Reduction of the bias due to 
change in the resolution as a result of change in metadata 
can be achieved by 3D volume normalization and 3D 
volume resize. Volume normalization is a preprocessing 
technique commonly used in medical imaging, particu-
larly in the analysis of 3D volumetric data from MRI or 
CT scans. The primary objective of volume normaliza-
tion is to standardize the intensity values of voxels (3D 
pixels) to a consistent range, which facilitates compari-
son, analysis, and for further processing of the images.

The 3D volume normalization can be achieved by con-
sidering the magnitude of the voxels in the MR image 
given in (1).

Where ‘r’, ‘c’, and ‘h’ denote the row, column, and height 
respectively. voxelr,c,h denotes the voxel magnitude at ‘r’, 
‘c’, and ‘h’. voxelmin and voxelmax denote the minimum and 
maximum magnitudes of voxels in a particular 3D-MR 
image. This process consists of two steps: first, subtract-
ing the minimum intensity value from each voxel’s inten-
sity, which shifts the range to start at 0, and then dividing 
by the range (difference between maximum and mini-
mum values) to scale the values.

The resizing of a 3D volume using nearest-neighbor 
scaling involves calculating scaling factors based on the 
desired and current dimensions, mapping each voxel 
in the resized volume to the corresponding voxel in the 
original volume using these scaling factors, and applying 
the nearest-neighbor method to select the appropriate 
voxel value. This process ensures that the resized vol-
ume maintains the structure of the original volume while 
adjusting to the new desired dimensions efficiently.

The 3D MRI resizing is done with respect to its depth, 
breadth, and height to generate new, predetermined 
measurements as given in (2). To reduce the computa-
tional cost, the Nearest-neighbor image scaling method 
is used.

In (2), Volume, and VolumeR denotes the original 
volume and resized volume, respectively, ‘r’, ‘c’, and ‘h’ 
denotes the row, column and height, respectively. Nota-
tions Df  , Wf  and Hf  are the scaling factors, and they are 
calculated as shown in (3), (4) and (5).

(1)voxelr,c,h =
voxelr,c,h − voxelmin

voxelmax − voxelmin

(2)
VolumeR (r, c, h) = Volume (r ∗ Df , c ∗Wf , h ∗Hf )
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Data augmentation
Data augmentation is an essential technique in ML and 
DL, especially when working with images. It involves 
creating new training samples by applying various 
transformations to the original data to increase the size 
and diversity of the dataset. This process significantly 
increases the size and diversity of the dataset, enabling 
models to generalise better and become more robust, 
ultimately improving their performance on unseen 
data. The rotate and render technique has been used to 
increase the training data without affecting the pixels’ 
resolution. This is achieved by rotating the normalized 
and resized MRI at six angles.

Baseline models
This section explains the baseline models to detect 
the MCI with the existing architecture: 1. 3D CNN 2. 
Domain adaptation using transfer learning.

3D‑CNN Architecture for classification
CNN is a neural network architecture based on the deep 
learning algorithm that takes an image as an input and 
then converts the pixels of those images into array data 
types depending upon the brightness of the pixel values 
in the input image. The 2D CNN is suitable for 2D image 
features but fails to provide volumetric information. 
At the same time, the 3D CNN enables volumetric data 
analysis in medical imaging [18]. Hence, it is suitable for 
the analysis of 3D MR images. The advantage of 3D CNN 
over 2D CNN is its ability to take care of spatial and tem-
poral information, which helps retain the changes in each 
consecutive frame. In 3D CNN, a 3D kernel is used to 
apply convolution on a stack of multiple frames, as given 
in (6).

(3)Df =
desiredd

currentd

(4)Wf =
desiredw

currentw

(5)Hf =
desiredh

currenth

(6)v
xy
ij = tanh bij+

m

Pi-1

p=0

Qi-1

q=0

Ri-1

r=0
w
pqr
ijm v(i+j)m

(x+p)(y+q)(z+r)

Where, Pi , Qi,Ri
 denotes the dimensions of the 3D kernel 

of the ith layer, wpqr
ijm

 10
v(i+j)m

(x+p)(y+q)(z+r) the input feature map value at the spatial 
location (x+p, y+q, z+r).Vxy

ij  denotes the output feature 
map of a ith layer and bij denotes the bias [18]. A 17-layer, 
3D CNN is designed for 3D MR image classification. This 
architecture has 1,352,897 trainable parameters and it is 
shown in Fig. 1.

3D‑CNN Architecture for Segmentation
The 3D Deep CNN [26] adopted for segmenting the 
region of interest, which is the hippocampal region of 
the brain. As the volume of the hippocampus decreases, 
it indicates the progression of disease where the images 
are fed, and we obtain the output that is 2 segmented .nii 
file that contains the left and right hippocampal regions. 
This architecture consists of encoder block, segment 
block, refine block and post processing where the volume 
is calculated. The ConvNet outputs a segmentation map 
that finds the probability of a voxel in the segmented part 
that is projected back to the native space and is option-
ally thresholded. The volume of the hippocampus is then 
calculated from this segmented .nii file. Figure 2 depicts 
the entire process of segmentation and volume calcula-
tion. This segmented hippocampus voxel is given to the 
discussed 3D-CNN classifier in 2.3.1 to classify NC, AD, 
and MCI.

Domain adaptation
In general, image classification using deep learning 
requires a large set of annotated data to train the model 
for classification in the supervised learning paradigm. 
However, not all the applications have massive anno-
tated datasets. It requires intense manual labour, so a 
domain adaptation is followed for biomedical image clas-
sification. Transfer learning is a technique that involves 
retaining knowledge, such as features and weights, from 
a pre-trained model and using it to train the pretrained 
models on different datasets. It saves time and com-
puting resources by applying the pre-trained model’s 
learned features and weights. Transfer learning domain 
adaptation is particularly beneficial in medical imag-
ing, especially when dealing with small datasets [27]. 
This work considers three Keras pre-trained deep learn-
ing models, namely, MobileNetV1, InceptionNetV2, and 
DenseNet201. These models were pre-trained with the 
ImageNet dataset. The domain adaptation process begins 
with raw 3D MRI data converted into 2D images to clas-
sify subjects as NC, AD, or MCI.
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Proposed method
AD is characterized by various clinical symptoms, with 
hippocampal atrophy being a prominent feature. The 
decrease in hippocampal volume serves as a reliable indi-
cator of the progression of the disease. Two novel hybrid 
learning models are proposed, each encompassing two 
stages: (1) Classification of NC versus Symptomatic AD, 
and (2) Classification of MCI versus AD using the Symp-
tomatic AD data identified in stage 1. These models are 
illustrated in Fig. 3.

Proposed Hybrid Learning Model 1 (HLM1)
In the hybrid learning model 1 (HLM1), 3D CNN archi-
tecture explained in section  2.3.2 segments the hip-
pocampal voxel is segmented, and volume is quantified. 
Using the obtained hippocampal volume, the machine 
learning models classify the subject as either NC or 
symptomatic AD. In stage 2, the symptomatic AD data 
were further distinguished into MCI and AD using 
CSF biomarkers of symptomatic AD. To address the 

uncertainty present in the CSF biomarkers, they undergo 
a fuzzification process. The notion of fuzzy is used for 
handling uncertainty and imprecision, which is particu-
larly useful in medical diagnoses where biomarker values 
can overlap between different conditions like AD and 
MCI. The primary difference between the fuzzy set and 
the traditional set is the way they use the set elements 
to make any decision. In traditional logic, an element 
either belongs to a set or does not (e.g., a patient either 
has AD or does not) depending on a threshold, whereas 
fuzzy logic introduces the concept of partial member-
ship where each element (or patient) belongs to both the 
sets (AD or not) with a certain degree of membership. 
Each biomarker value is assigned a membership function, 
which quantifies the degree to which that value belongs 
to a particular set. To incorporate the concept of fuzzy, 
each biomarker value is assigned a membership func-
tion, which quantifies the degree to which that value 
belongs to a particular set (e.g., AD or MCI). Whenever 
biomarkers for AD and MCI overlap, fuzzy logic helps in 

Fig. 1  3D CNN Architecture for Classification
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Fig. 2  3D CNN Architecture for segmentation of the hippocampal region [26]



Page 7 of 15Alex et al. BMC Geriatrics           (2025) 25:54 	

managing this overlap by assigning degrees of member-
ship rather than forcing a traditional logic. This is crucial 
because, as AD progresses, some biomarkers increase 
while others decrease, and a strict threshold could mis-
classify the patients. The fuzzy membership for each bio-
marker is calculated as given in (7).

Where, µij denotes the fuzzy membership of the jth bio-
marker towards the ith cluster center, xj denotes the jth 
biomarker, ci and ck denotes the ith and kth cluster center 
respectively, and m denotes the fuzziness parameter.

This membership function is derived from the Fuzzy 
c-mean objective function given in (8).

Subject to condition: 
∑2

i=1 µij = 1, j = 1, 2, . . . , n

where, J is minimized to estimate the best cluster cen-
tres ci. ci denotes the cluster centres of the cells belong-
ing to AD and MCI, µij denotes the fuzzy membership 
of the jth biomarker towards the ith cluster centre, and 
n denotes the total number of biomarkers. Thus, hip-
pocampal volume and fuzzified CSF biomarkers are 

(7)
µij =

1

∑C
k=1

(

�xj−ci�

�xj−ck�

)
2

m−1

(8)

J
(

Uij ,Ci

)

=
Minimize
Uij ,Ci

∑2

i=1

∑n

j=1
µij

m�xj − ci�
2

given as input to the machine learning models for MCI 
detection. The same is explained through the pseudocode 
as shown in Algorithm 1. Figure 4 shows the block dia-
gram of HLM1

 Algorithm 1 - Hybrid Learning Model 1 

In the above algorithm, M1, M2... M13 are the ML models, 
namely SVC, Decision tree, Random forest, XGB, LGBM, 
Extra Tree, Gradient Boosting, Ada Boost, K Neighbors, 
MLP, Gaussian NB, Logistic and Voting classified (soft).

Proposed Hybrid Learning Model 2 (HLM2)
In the hybrid learning model 2 (HLM 2), the hip-
pocampus segmentation is obtained using a 3D CNN 
architecture explained in section 2.3.2, and the volume 

Fig. 3  Proposed Models
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is quantified. The volume obtained might have uncer-
tainty during the segmentation and quantification. To 
address this unpredictability, fuzzy clustering is used 
to determine whether the volume corresponds to 
AD or NC, rather than relying on a machine learning 
model. Figure  5 shows the block diagram of HLM2. 
In HLM 1, it has been observed that high accuracy is 

obtained by the Extra Tree classifier while classifying 
NC vs. AD. So, in stage 2, the identified symptomatic 
AD subjects are further classified into MCI or AD with 
the help of the fuzzified CSF by Extra Tree classifier 
model. The same is explained through the pseudocode 
as shown in Algorithm 2. Figure 5 shows the block dia-
gram of HLM2.

Fig. 4  Proposed HLM1

Fig. 5  Proposed HLM2
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Experimental setup

 Algorithm 2: Hybrid Learning Model 2 
(HLM2) Experimental setup
Dataset
All experiments were conducted using the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) clinical data-
set (https://​adni.​loni.​usc.​edu). The ADNI repository 
includes imaging, clinical, and genetic data for over 2,220 
patients across four studies (ADNI1, ADNI2, ADNI GO, 
and ADNI3). These datasets differ in demographics and 
medications and include periodic follow-ups of patients. 
Imaging data from ADNI1, ADNI2, and ADNI GO com-
prises MRI and PET scans. The data publisher has stand-
ardized these images to mitigate nonlinearity caused 
by scanners from different vendors. For this study, 630 
cross-sectional 3D T1-weighted MRI images were used, 
each containing 9,108 voxels distributed across 18 slices 
(1.2 mm thick), with 22–23 voxels per slice. Additionally, 
500 CSF data samples from ADNI1, ADNI2, and ADNI3 
were included in the analysis. AD and MCI MR images 
were selected based on the availability of the CSF data. 
The Demographic details of the subjects are given in 
Table 1.

Baseline model configuration
3D‑CNN Architecture for  classification  Dataset of 630 
3D MRI images was applied via the data augmentation 
method resulting in 3780 3D MRIs being considered for 
3D CNN classification. A custom built 17 layered 3D-CNN 

model with 1,352,897 parameters as explained in section 2 
with 3 class softmax layer is designed for classification. 
Adam optimizer is applied, and Softmax activation func-
tion is used for the output layer and ReLU for other layers. 
The ratio of train and validation data is 9:1. The segmenta-
tion of the hippocampal region from 3D MRI data is done 
using a hippo deep network. This hippo deep network is 
trained using segmented hippocampal images obtained 
from Free Surfer. The size of those images is [432, 288]. 
A total of 630 3D-hippocampus were segmented from 
3D MRI and applied to a custom-built 17-layer 3D CNN 
model for classification. The dataset was split into a train-
ing set and a validation set with a ratio of 9:1.

Domain transfer  According to the literature, the hip-
pocampus region is visible in only a limited number of 
slices in the coronal view. Here, 630 3D MRI scans were 
taken from ADNI and 18 slices of 2D coronal view images 
were taken from each 3D MRI scan resulting in a total 
of 11340 images. Typical Keras pretrained model takes 
an input of image size 224 x 224. So, resizing of the 2D 
images has been performed using med2image, a simple 
utility in Python that converts medical files to .jpg or .png 
format to match the requirement of the pre-trained deep 
learning models. The last layer of the pretrained model 
has 1000 classes. But, for our application, the SoftMax 
layer is configured with three classes (NC, MCI, AD) clas-
sification. The network is optimized with RMSProp and 
ADAM optimizers. Both the optimizers reported similar 
performance, with RMSProp giving slightly better accu-
racy. The learning rate was set to 0.001. The model was 
trained for 150 epochs for each of these models and fine 
tuned from 150-th epoch for 50 more epochs. Each of 
these pretrained models are finetuned from 3/4th of the 
total layers in each model.

Proposed model setup
A dataset of 630 original 3D MRIs is considered for the 
proposed model. During the second stage, symptomatic 
AD cases with 500 CSF data points were included. The 
dataset was split into a training set and a validation set 
with a ratio of 7:3. During training, an initial learning 
rate of 0.0001 was set, and a learning rate schedule based 
on exponential decay was employed to adapt the learn-
ing rates. The model was compiled using binary cross-
entropy loss and optimized with the Adam optimizer. 
The training process was conducted for 100 epochs. 
The experiments were conducted on the GoogleColab 
platform, utilizing its GPU resources for efficient model 
training and evaluation.

Table 1  Demographic details of the subjects

Group No of Subjects Male Female Age Range

AD 215 133 82 55–93

NC 204 75 129 57–95

MCI 211 123 89 58–94

https://adni.loni.usc.edu
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Results and discussion
Baseline model results
3D CNN Architecture for classification
The segmented left and right hippocampal atrophy for 
each AD, MCI, and NC are shown in Fig. 6. As we can see 
the thickness of the hippocampal region becomes thin as 
it transitions from NC to AD via MCI

As discussed, the 17-layered 3D CNN model in sec-
tion  2.3.1 is employed to classify the original 3D MR 
images and the voxels from the segmented hippocam-
pus image. The experimental results show that using the 
segmented hippocampus from MRI for classification sig-
nificantly improves accuracy, achieving a 10% increase 
compared to using the original 3D MRI data. This result 
indicates that incorporating hippocampal segmentation 
improves the classification model’s performance, enhanc-
ing its ability to accurately assign MRI data to their 
respective classes. Table 2 shows the Classification accu-
racy of the 3D CNN architecture.

Domain transfer
The Keras models’ hyperparameters are around 3 mil-
lion for MobileNet, 50 million for InceptionNet, and 20 
million for DenseNet. In terms of the number of layers, 
MobileNet has 86, while InceptionNet and DenseNet 
have around 700. The highest validation accuracy 
obtained is 67.7% for MobileNet with fewer trainable 
parameters. The other architectures, namely Inception-
Net and DenseNet, yielded 58.6% and 58%, respectively; 
the same is shown in Table  3. MobileNetV1 is a light-
weight architecture that has depthwise convolution and 
pointwise convolution, which makes it better than other 

models. Still, the domain adaptation method did not 
yield good performance even though the networks were 
fine tuned for MR images.

Proposed model result
Hybrid learning model 1
In HLM1, the left, right, and total hippocampal volumes 
are taken as input to the ML models for classifying the 
subject as NC or symptomatic AD. Thirteen machine 
learning models, namely Support Vector Classifier, Ran-
dom Forest, eXtreme Gradient Boosting, Light Gradient 
Boosting, Extra Trees, Gradient Boosting, Ada Boost, 
K-Nearest Neighbors, Multi-Layer Perceptron, Gaussian 
Naive Bayes, Logistic Regression, and a Voting Classifier 
are trained to classify the quantified hippocampal vol-
ume into NC or AD. Among them, the Extra Trees Clas-
sifier yielded a high accuracy of 94.4%. The Extra Trees 
Classifier is an ensemble method that constructs multi-
ple unpruned decision trees with random attributes and 
cut-point selection, increasing diversity and reducing 
overfitting. This randomness enhances computational 
efficiency and creates a robust, generalisable model by 
aggregating de-correlated trees through majority vot-
ing. Consequently, it captures various data patterns more 
effectively than individual decision trees [28]. Further, in 
stage 2, fuzzified CSF biomarkers like Abeta, T-tau, P-tau 
and CSF ratio are taken along with the hippocampal vol-
ume biomarkers; the ML models achieved a high accu-
racy of 93.6% for classifying AD and MCI. These results 
prove the effectiveness of the HLM1 approach using dual 
biomarkers. The efficacy of the usage of dual markers is 

Fig. 6  Segmented left and right hippocampal region (a) AD, (b) MCI, and (c) NC

Table 2  Accuracy of the 3D CNN architecture

Method Accuracy

3D CNN Classification Original MRI 44.1%

Segmented hippocampus 54%

Table 3  Comparison of accuracy of domain transfer models

Model Parameters No of layers Accuracy

MobileNetV1 3,231,939 86 67.7%

InceptionNetV2 54,336,736 708 58.6%

DenseNet201 18,327,747 707 58%



Page 11 of 15Alex et al. BMC Geriatrics           (2025) 25:54 	

also discussed in the ablation study. To provide a com-
prehensive overview of the results, the accuracy obtained 
using various ML models has been listed in Table 4, and 
the same is corroborated by the bar plot shown in Fig. 7a 
and b.

Hybrid learning model 2
In HLM2, instead of ML models, to manage the uncer-
tainty of the quantified hippocampal volume, fuzzy clus-
tering was implemented to classify NC or symptomatic 
AD in stage 1. Based on the best performance of the Extra 
Tree Classifier from HLM1, it is selected as the classifica-
tion model for HLM2 in stage 2. The experimental results 
indicate an impressive accuracy of 92.8% for distinguish-
ing between NC and symptomatic AD and 93.8% for MCI 
and AD. These results highlight the potential of HLM2 to 
distinguish between MCI and AD, thereby facilitating a 
more accurate and effective diagnosis. Table 5 shows the 
accuracy obtained using HLM2. Considering both HLM1 
and HLM2, the average accuracy achieved is 93.6% for 
NC vs. symptomatic AD and 93.7% for distinguishing 
between MCI vs. AD. These average accuracy values 
demonstrate the consistent performance of the hybrid 
learning models in accurately classifying MCI vs AD of 
the MRI data.

Comparison of our experimental results
A comparison of baseline and proposed model accuracy 
is shown in Table 6. Traditional 3D CNN model with 17 
layers has trainable 1,352,897 parameters. This requires 
a huge amount of data for training and also high-end 
computing systems with large amounts of GPUs. With 

4000 3D-MRI, 3D-CNN model accuracy yielded 50 to 
60%. Next, we have utilized pre trained Keras models 
using domain adaptation. Though the data set is 11340, 
still the classification accuracy is poor in domain adapta-
tion. This is because the pretrained models are trained on 
ImageNet dataset, which does not share any high-level 
feature with brain images. Instead of 3D-CNN for classifi-
cation, in our proposed hybrid models, we have leveraged 
3D-CNN to segment the Region of Interest (ROI)-hip-
pocampus and quantify the volume. This hippocampus 
volume biomarker is fed to machine learning classifiers 
which performed much better than deep learning mod-
els with smaller data. Also, in stage1, the Fuzzy cluster-
ing was employed to handle the inherent uncertainty and 
overlap between different stages of cognitive impairment. 
By assigning membership probabilities rather than hard 
labels, our model in stage-1 can more accurately distin-
guish between normal controls (NC) and symptomatic 
AD, especially in scenarios with limited data points. 
Integrating the hippocampal volume with the fuzzified 
cerebrospinal fluid (CSF) biomarkers allows our model 
in stage-2 to leverage complementary information from 
both imaging and biochemical data. Our proposed mod-
els HLM1 and HLM2 yielded accuracy of 93.8% and 93.6 
% in distinguishing MCI and AD.This holistic approach 
enhances diagnostic accuracy by providing a more com-
plete picture of the patient’s condition, making it easier 
to distinguish between MCI and AD, even with a limited 
number of samples.

The proposed model can be used as an effective pre-
liminary screening tool, especially in high-patient volume 
settings. It identifies individuals at risk for Mild Cogni-
tive Impairment (MCI) or Alzheimer’s Disease (AD) by 
analyzing their Hippocampal volume and cerebrospinal 
fluid (CSF) data. By focusing on these at-risk individu-
als, healthcare providers can prioritize them for further 
clinical evaluation, enabling timely interventions. This 
approach improves outcomes for people experiencing 
cognitive decline by reducing the evaluation process and 
increasing the likelihood of early treatment.

Comparison with existing literature work
The effectiveness of our proposed methodology is 
assessed with the results of existing literature, which is 
shown in Table  7. All the literatures shown in Table  5 
used ADNI dataset. In [29], CNN was trained with MRI 
image patches for classifying NC and AD. The size of the 
dataset utilized is 818 MRI images. Kanghan et  al. [18] 
used convolutional autoencoder (CAE) based unsuper-
vised learning for the AD vs. NC classification task with 
694 MRI scans. On the other hand, the proposed hybrid 
model achieves better accuracy with a smaller dataset of 

Table 4  Accuracy of the proposed HLM1

STAGE 1 
3D CNN segmentation+ 
ML models
(NC vs. symptomatic AD)

STAGE 2 
ML models 
fuzzified 
CSF
(MCI vs. AD)

SVC 65 87.3

Decision tree 74.4 92.9

Random forest 82.5 93.6

XGB 82.3 91.5

LGBM 87.4 93.6

Extra Tree 94.4 93.6

Gradient Boosting 83.8 92.2

Ada Boost 74.8 90.1

K Neighbors 58.1 88

MLP 65.3 87.3

Gaussian NB 66.4 79.5

Logistic 84.1 87.3

Voting classifier(soft) 90.6 90.2
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630 MRI images with 500 CSF. It outperforms a DNN 
[22] used to classify NC vs. MCI vs.AD

Ablation study
This study leverages dual biomarkers-hippocampal vol-
ume and CSF, for classifying individual subjects into 
NC, MCI, and AD. Figure  8a, b, and c show the CSF 

Fig. 7  Model Vs Accuracy of HLM1 (a) stage 1 (b) stage 2

Table 5  Accuracy of the HLM2

Stage 1 
3D CNN segmentation + fuzzy 
clustering
(NC vs symptomatic AD)

Stage 2 
Extra tree classifier 
+fuzzified CSF
(MCI vs. AD)

Accuracy 92.8 93.8
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distributions of 10 subjects in each of the three groups: 
NC, MCI and AD. These distributions reveal distinct 
patterns in the levels of the Abeta, T-tau, and P-tau 
biomarkers. In individuals with AD, there is a notice-
able trend of decreasing Abeta levels, accompanied by 
increasing T-tau and P-tau levels. Conversely, the NC 
group typically exhibits normal or higher Abeta levels 
and lower T-tau and P-tau levels. A decrease in Abeta 
levels is observed for individuals with MCI; Additionally, 

Table 6  Comparison of proposed models vs baseline models

Method Classification Accuracy

3D CNN Classification NC vs MCI vs AD 54%

MobileNetV1 NC vs MCI vs AD 67.7%

HLM1 NC vs Symptomatic AD 94.4%

MCI vs AD 93.6%

HLM2 NC vs Symptomatic AD 92.8%

MCI vs AD 93.8%

Table 7  Performance comparison of proposed hybrid models with existing literature on ADNI dataset

Authors Methods Dataset No of Images Accuracy in %

Weiming Lin et al. [29] CNN AD vs NC 818 88.79

Kanghan et al [18] Convolutional Autoencoder +Transfer learning AD vs NC 694 86.60

P C Muhammed Raees et al [22] DNN NC vs.MCI vs.AD - 80–90

Proposed HLM1 3D CNN→ML Model [stage 1]
ML Model [stage 2]

NC vs Symptomatic AD
MCI vs AD

630 94.4
93.6

Proposed HLM2 3D CNN→Fuzzy Clustering [stage 1]
Extra Tree Classifier [stage 2]

NC vs Symptomatic AD MCI vs AD 630 92.8
93.8

Fig. 8  CSF biomarkers: Abeta, T-tau, P-tau distribution in (a) NC, (b) MCI, and (c) AD
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T-tau and P-tau levels in MCI are higher than in the NC 
group but lower than in the AD group. This finding sug-
gests a potential transitional state, as mentioned in ref-
erence [20]. Using the hippocampal biomarker alone as 
input to the extra tree classifier yielded 70% accuracy 
for NC vs. AD and 79% for MCI vs. AD, respectively. In 
another experiment, CSF biomarkers alone were used 
as the input to the extra tree classifier, which resulted 
in an accuracy of 72% and 75% for NC vs. AD and MCI 
vs. AD, respectively. These results indicate that the 
approach of using dual biomarkers and the fuzzification 
process proved to be more effective in accurately classi-
fying individuals into the respective groups. The impact 
of each biomarker in detecting MCI is given in Fig. 9 by 
a bar plot. The limitations of this study are primarily due 
to the small dataset size, which is a result of the scarcity 
of subjects with both MRI and cerebrospinal fluid (CSF) 
data. The limitations of this study are primarily due to 
the small dataset size, which arises from the scarcity of 
subjects with both MRI and cerebrospinal fluid (CSF) 
data. This limitation significantly restricts the model’s 
effectiveness. Further, the Deep learning model requires 
a high-end computing system with more than 48GB 
-GPU memory to train the model for better accuracy 
with more data. Currently, we have trained our models 
with GoogleColab. Accuracy will be improved when the 
models are trained with more data.

Conclusion
Alzheimer’s disease is a complex neurological condition 
characterized by progressive cognitive decline, which 
can lead to dementia if not diagnosed and managed in 

its early stages. Early diagnosis and intervention are 
crucial for slowing the progression of the disease and 
improving the quality of life for affected individuals. 
In this research, hybrid models are presented to detect 
MCI. The integration of multiple data sources (MRI 
and CSF) from ADNI provides a more holistic view of 
the patient’s condition, allowing for a better assessment 
of disease progression. The model’s precision in iden-
tifying MCI, the critical transitional stage before AD, 
facilitates earlier and potentially more effective thera-
peutic interventions. The proposed hybrid approach 
allows for more nuanced differentiation between dif-
ferent stages of cognitive impairment, which is crucial 
for tailoring treatment plans to individual patients. The 
model can be adapted and scaled to incorporate addi-
tional biomarkers and imaging techniques, making it 
flexible for future advancements in AD research and 
diagnosis.
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