Skip to main content

Table 3 Comparison of the characteristics of five ML models

From: Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of depression in stroke patients

Characteristics

RF

DT

XGBoost

NB

SVM

AUC

0.711 (0.638,0.778)

0.719 (0.643,0.792)

0.746 (0.674,0.810)

0.671 (0.607,0.736)

0.703 (0.627,0.776)

APS

0.334

0.310

0.353

0.230

0.353

Accuracy

0.825

0.837

0.834

0.837

0.837

Specificity

0.968

1.000

0.982

1.000

1.000

Sensitivity/Recall

0.091

0.000

0.073

0.000

0.000

NPV

0.845

0.837

0.845

0.837

0.837

PPV

0.357

NA

0.444

NA

NA

FPR

0.032

0.000

0.018

0.000

0.000

FNR

0.909

1.000

0.927

1.000

1.000

F1 score

0.779

0.762

0.780

0.762

0.762

  1. ML, machine learning; RF, random forest; DT, decision tree; XGBoost, extreme gradient boosting; NB, Naïve Bayesian; SVM, support vector machine; AUC, the area under the curve; APS, average precision score; NPV, negative predictive value; PPV, positive predictive value; FPR, false positive rate; FNR, false negative rate; NA: null