Author (year) | Continuous variable processing method | Missing data handling | Modelling Methods | Validation method | Model performance | Model presentation | Final predictors | Interpretability | ||
---|---|---|---|---|---|---|---|---|---|---|
Discrimination | Calibration | Others | ||||||||
Dormosh [16] 2023 | Continuous variable | Multiple imputation | LR + Lasso | 10-fold cross-validation | AUROC: 0.695 (0.667–0.724) | Calibration curve | - | The formula of risk score | Fall history (0.34), Cardiac arrhythmias (0.35), Renal failure (0.33), Antipsychotics (0.48), Admission to neurologic department (0.53), Admission to emergency department (0.56), Heart rate (0.01), Katz ADL score (0.06), DOS score (0.04), Missing potassium (-0.38), Missing calcium (-0.25), Missing PaCO2 (-0.32), Missing DOS score (-0.41), | - |
Adeli [17] 2023 | Continuous variable | Imputation | ANN | Leave-one-out cross-validation | AUROC:0.762 | - | Acc:0.731; Spe:0.732 Average Precision:0.499 Precision:0.441; Recall:0.728 F1:0.549 | Prediction probability | - | NR |
Zhao [18]2020 | Continuous variable | NR | LR | Random split | AUROC A:0.874(0.784–0.964) B:0.847(0.771–0.924) | Calibration curve | Sen:0.692 Spe:0.855 | Nomogram | History of fractures (1.67), Orthostatic hypotension (1.72), Functional status (1.07), Sedative-hypnotics (2.11), Level of serum albumin (2.53) | - |
Wijesinghe [19] 2020 | NR | NR | LR; SVM; RF | 10-fold cross-validation | NR | NR | Precision:0.756; Recall:0.937; F1:0.836 | Prediction probability | NR | NR |
Kawazoe [20] 2022 | Categorical variables | Multiple imputation | BERT + Bi-LSTM | Temporal validation | AUROC:0.851 | NR | Sen:0.737; Spe:0.839; Precision:0.093; F1:0.165 | Prediction probability | - | NR |
Chu [21] 2022 | Categorical variables | NR | DNN; XGBoost; LightGBM; RF; SGD; LR | Random split | AUROC:0.694 | NR | Acc:0.730; Sens:0.694; Spe:0.694; Precision score:0.694; Recall score:0.694; F1:0.730 | Prediction probability | - | PFI |
Alharbi [22] 2022 | Categorical variables | NR | Catboost | Independent dataset validation | NR | NR | Dataset SERV: Acc:0.942, Sen:0.916, Spe:0.968, PPV:0.968,NPV:0.918,F1:0.941 Dataset SV: Acc:0.989, Sen:0.988, Spe:0.990, PPV:0.992, NPV:0.985, F1:0.990 | Software-based platform | - | NR |
Peel [23] 2021 | Categorical variables | NR | LR | Independent dataset validation | AUROC: 0.700(0.630–0.760) | NR | Sen:0.72 spe:0.60 | Scoring table | Sex (0.63), BMI (0.53), Fall in last 90 days (0.51), Balance problem (0.69), Psychological problems (0.86), Age (-0.03) | - |
Vratsistas-Curto [24] 2018 | Continuous variable | NR | LR | Bootstrap | AUROC: 0.730(0.660–0.810) | NR | - | Scoring table | Mobility/transfers, Mentalstatus/cognition, Male sex. | - |
Beauchet [25] 2018 | Categorical variables | Exclude | ANN | Random split | NR | NR | Acc:0.838; Sen:0.296; Spe:0.943 PPV:0.500; NPV:0.874; F1:0.372 | Prediction probability | - | NR |
GholamHosseini [26] 2014 | NR | NR | NR | Random split | NR | NR | Acc:0.740; Sen:0.850; PPV:0.850 F1:0.850 | Scoring table | Real-time vital signs, Motion data, Medications, Falls history and muscle strength. | NR |
Neumann [27] 2013 | Continuous variable | - | LR; DT; Add-up model | Temporal validation | NR | NR | Sen:0.460; Spe:0.711; PPV:0.149 NPV:0.923 | Scoring table | Mental alteration, Fall history, Insecure mobility | - |
Marschollek [28] 2012 | Continuous variable | Mean imputation | LR; DT | 10-fold cross-validation | AUROC:0.63 | NR | Acc:0.660; Sen:0.554; Spe:0.671 PPV:0.150; NPV:0.935; F1:0.237 | Prediction probability | High age, Low Barthel index, Cognitive impairment, Multi-medication Co-morbidity | PFI |